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Abstract

A new method based on a continuous, piece-wise linear approximation of the equations for Lagrangian shock hydrodynamics is
presented. Numerical instabilities are controlled by a stabilizing operator derived using the paradigm of the variational multiscale
analysis. Encouraging numerical comparisons with existing methods in the case of quadrilateral and hexahedral elements indicate
that the proposed method is capable of preventing hourglass patterns in the solution, while maintaing accuracy in regions of smooth
flow. The proposed approach satisfies Galilean invariance properties and hinges upon the interpretation of the Lagrangian shock hy-
drodynamics equations as a system of nonlinear wave equations. A specific implementation in terms of a predictor/multi-corrector
version of the mid-point time integrator guarantees global conservation of mass, momentum, and total energy for each iterate.
Stability and formal order of accuracy are investigated applying the von Neumann analysis to the linearized shock hydrodynamics
equations in one dimension. This approach yields tight bounds for stable time-step estimation, formal second-order accuracy of the
method in time and space, and valuable indications on the choice of the most appropriate values for the stabilization parameters
present in the formulation.

Key words: Lagrangian shock hydrodynamics, stabilized methods, variational multiscale analysis, updated Lagrangian
formulation, hourglass control, nodal finite element method.

1. Introduction

In recent years, renewed effort has been devoted to the tech-
nical advancement of Lagrangian shock hydrodynamics algo-
rithms (hydrocodes in short), spurred by the current and fore-
seeable computational challenges in terms of physical and ge-
ometric complexity (for a non-exhaustive list of publications
on this topic, see [2, 3, 5, 6, 9–11, 13, 14, 19, 20, 40–
46, 53, 55, 56]). In particular, the developments in [3, 9–
11, 13, 14, 44–46] focussed on improving the robustness of
simulations with respect to mesh distortion, while maintaining
second-order accuracy in smooth regions of the flow.

This article presents a new stabilization concept in which the
variational multiscale approach [26, 27, 33] is applied to La-
grangian shock hydrodynamic flows in combination with piece-
wise linear, continuous finite element approximations. Specifi-
cally, the proposed method adopts a continuous piece-wise lin-
ear approximation of both thermodynamic and kinematic vari-
ables. This is in contrast with more traditional approaches
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in shock hydrodynamics, which rely on a piece-wise constant
discretization of the thermodynamic variables. A multiscale
decomposition of the solution into coarse (discretely repre-
sentable) scales and fine (subgrid) scales is adopted. An ap-
proximation of the subgrid-scale component of the solution is
used to control instabilities of acoustic type, which are typically
responsible for spurious hourglass modes in the case of quadri-
lateral/hexahedral elements, or pressure instabilities (often re-
ferred to as element artificial stiffness) in the case of triangu-
lar/tetrahedral elements (see [4, 25] for a detailed introduction
to the subject). The solution enrichment by fine-scale subgrid
contributions provides enhanced stability without reducing ac-
curacy, as the method relies on residual-based (therefore varia-
tionally consistent) approximations of the fine scales (see also
[57]). Stabilization operators are developed in the context of
smooth flows, and need to be complemented by appropriate dis-
continuity capturing operators (e.g., artificial viscosities [65]),
whenever shock wave discontinuities are expected.

The present work stems from earlier work [52, 53], and rep-
resents a considerable advance from many points of view. The
method leverages a variational formulation of the shock hy-
drodynamics equations in updated Lagrangian form, for which
most integrals are computed directly in the current configura-
tion (see [4] for details on this nomenclature). This strategy
contrasts with the formulation in [53], which was posed in the
original configuration (total or pure Lagrangian approach [4]),
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and allows for a reduction in the computational costs. In fact,
the deformation gradient mapping from the original to the cur-
rent configuration does not need to be evaluated explicitly, but
is implicitly calculated by updating the coordinates of the mesh
nodes. In addition, algorithms for fast dynamics posed in the
current configuration usually enjoy improved discrete invari-
ance and objectivity properties relative to corresponding algo-
rithms cast in the original configuration. This is due to the
fact that the discretization of the unsymmetric Piola stress ten-
sor does not always preserve the same invariance properties of
the analytical counterpart (see [4, 25, 39, 59] and references
therein, for more details).

The proposed method is implemented using a second-order
predictor/multi-corrector, mid-point type time integration pro-
cedure similar to [55, 56], to preserve at each iteration global
mass, momentum, and total energy. This is in contrast to
the predictor/multi-corrector space-time integrator proposed in
[53], in which conservation is guaranteed only when conver-
gence of the iterative process is attained. It is also important
to appreciate that the general variational multi-scale approach
is not limited in applicability to mid-point type integrators, but
can be extended - with minor modifications - to a larger class of
time integrators, including, for example, explicit Runge-Kutta
methods.

In the current implementation, lumped mass matrices are
used to integrate in time the momentum and internal energy
equations, providing increased robustness under severe shock
conditions. One of the problematic issues discovered in the
development of the algorithm presented in [53] was that neg-
ative undershoots of the pressure and internal energy could oc-
cur in a number of challenging test cases. The combination
of mass lumping with the new time-integrator has eliminated
this problem. This result is very important especially when
complex constitutive models, usually in tabular form, are used
in the computations. The overall result is a method of im-
proved robustness and accuracy, with very encouraging perfor-
mance on a number of challenging computations, such as the
three-dimensional Saltzmann, Noh [49] and Sedov [58] tests
on Cartesian (i.e, non-polar) meshes.

This article also presents the full von Neumann analysis
of stability for the predictor/multi-corrector algorithm applied
to the linearized one-dimensional shock hydrodynamics equa-
tions, governing acoustic wave propagation in a compressible
medium. Because the proposed algorithm is often used in
combination with shock capturing artificial viscosities, stability
bounds are derived not only in the case of a purely acoustic, un-
damped system of equations, but also in the case when diffusion
is present. A simple time-step control condition is developed by
analyzing the stability of the highest wave numbers in the dis-
crete system of equations, and compared with results from the
complete von Neumann analysis. Furthermore, by means of
Taylor series expansions, it is shown that the formal accuracy
of the method in the case of no artificial viscosity is second or-
der in time and space. Finally, the von Neumann analysis is also
used to provide effective estimates of the values of the stabiliza-
tion parameters present in the formulation, and for this reason,
constitutes a fundamental part in the design of the algorithm.

Although the proposed method can also be applied to trian-
gular and tetrahedral finite element meshes (see [53], for an
example in the context of earlier developments), the focus of
the present paper is on computations with quadrilaterals and
hexahedral elements. Focusing exclusively on these types of
mesh topologies allows us to present extensive numerical com-
parisons with respect to earlier methods developed by some of
the authors [53, 55, 56], and other research groups [2, 42]. The
results of numerical computations show that hourglass patterns
are virtually absent in two and three dimensions, a remarkable
property of the proposed algorithm when compared to state-
of-the-art methods in the field. Additional developments on
triangular and tetrahedral meshes will be the object of future
publications.

The rest of the exposition is organized as follows: Sec-
tion 2 is devoted to presenting the equations of Lagrangian
hydrodynamics and highlighting their structure as a nonlinear
(mixed) system for acoustic wave propagation. A lineariza-
tion of this system of equations is also derived. In Section 3,
the variational multiscale analysis is applied first to the lin-
earized version of the shock hydrodynamics system of equa-
tions (Section 3.1), and finally, to the full nonlinear case (Sec-
tion 3.2). Although the nonlinear method was originally de-
veloped first, the authors find that the linearized problem of-
fers an easier way of introducing the main concepts. Section 4
details a predictor/multi-corrector implementation of the varia-
tional multiscale approach. Invariance and global conservation
properties of the method are discussed in Section 5. The von
Neumann analysis is applied to a linearized version of this al-
gorithm in Section 6, in order to evaluate its stability, accuracy
and numerical diffusion/dispersion properties. Results from a
number of challenging numerical computations are discussed
in Section 7, and conclusions are summarized in Section 8.

2. General equations of Lagrangian shock hydrodynamics

The classical equations of Lagrangian shock hydrodynamics
govern the rate of change in position, momentum and energy of
a compressible body of fluid, as it deforms. Let Ω0 and Ω be
open sets in Rnd (where nd is the number of spatial dimensions).
The deformation

ϕ : Ω0 → Ω = ϕ(Ω0) , (1)
X 7→ x = ϕ(X, t) , ∀X ∈ Ω0, t ≥ 0 , (2)

maps the material coordinate X, representing the initial position
of an infinitesimal material particle of the body, to x, the posi-
tion of that particle in the current configuration (see Fig. 1). Ω0
is the domain occupied by the body in its initial configuration,
with boundary ∂Ω0. ϕ maps Ω0 to Ω, the domain occupied by
the body in its current configuration, with boundary ∂Ω. ϕ is
usually a smooth, invertible map, so that the deformation gradi-
ent, and the deformation Jacobian determinant can be defined
as

F = ∇Xϕ , (3)
J = det(F) , (4)
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Figure 1: Sketch of the Lagrangian map ϕ.

where ∇X is the gradient in the original configuration. In the
domain Ω, the equations for the displacement update and con-
servation of mass, momentum, and energy read:

u̇ = v , (5)
ρ J = ρ0 , (6)
ρ v̇ = ρ b + ∇x· σ , (7)
ρε̇ = ρ r + ∇xv : σ + ∇x· q . (8)

Here, ∇x and∇x· are the current configuration gradient and diver-
gence operators, and ˙(·) indicates the material, or Lagrangian,
time derivative. u = x − X is the displacement vector, ρ0 is
the reference (initial) density, ρ is the (current) density, v is the
velocity, b is the body force (e.g., gravity), σ is the symmet-
ric Cauchy stress tensor, r is the energy source term, and q is
the heat flux. Using index notation, σT : ∇xv = σ ji ∂xiv j, and
∇xv : σ = σ : ∇xv = σT : ∇xv, since σ is symmetric. We also
denote by E = ε+v ·v/2 the total energy, the sum of the internal
energy ε and the kinetic energy v · v/2. Obviously, E, ε, b, r are
measured per unit mass.

Equations (5)–(8) are most commonly adopted in shock-
hydrodynamics algorithms [6], and make use of the quasi-linear
rather than the conservative form of the internal energy equa-
tion. The sum of the internal energy equation (8) and the ki-
netic energy equation (the product of (7) by the velocity vector
v) yields the equation for the conservation of total energy. Al-
though (8) is not in conservative form, it can still be used to de-
velop a globally conservative variational formulation, as shown
in Section 5. Assuming that the boundary ∂Ω is partitioned as
∂Ω = ∂Ωg ∪ ∂Ωh, ∂Ωg ∩ ∂Ωh = ∅, displacement boundary con-
ditions are enforced on the Dirichlet boundary ∂Ωg, that is,

u|∂Ωg = ubc(x, t) , (9)

and traction boundary conditions are enforced on the Neumann

boundary ∂Ωh, by means of a physical traction vector t, that is,

σn|∂Ωh = t(x, t) . (10)

Equations (5)–(8), and boundary conditions (9)-(10) com-
pletely define the evolution of the system, once constitutive re-
lationships for the stress σ and heat flux q are specified, to-
gether with appropriate initial conditions.

2.1. Constitutive laws

For a fluid, the Cauchy stressσ reduces to an isotropic tensor,
dependent only on the thermodynamic pressure:

σ = −pInd×nd , (11)

An equation of state of the type

p = p̂(ρ, ε) , (12)

is assumed. For example, equations of state of Mie-Grüneisen
type are compatible with (12), namely

p̂(ρ, ε) = f1(ρ) + f2(ρ)ε , (13)

and apply to materials such as compressible ideal gases, co-
volume gases, high explosives, etc. (See [47] for more details.)
Ideal gases satisfy (13), with f1 = 0 and f2 = (γ − 1)ρ, to yield

p̂(ρ, ε) = (γ − 1)ρε . (14)

2.2. Structure of the Lagrangian flow equations

It is important at this point to further elaborate on the struc-
ture of the Lagrangian shock hydrodynamic equations, because
of its implications on the choice of stabilization techniques for
the discrete variational formulation. To this end, recall that, in
general, if an equation of state of the type ε = ε̂(ρ, p) exists,
then

dε =
∂ε

∂ρ

∣∣∣∣∣
p

dρ +
∂ε

∂p

∣∣∣∣∣
ρ

dp . (15)

Assuming, without loss of generality, q = 0 and r = 0, equation
(15) can be used together with the mass conservation equation
in differential form

ρ̇ + ρ∇x·v = 0 , (16)

to rearrange the energy equation (8):

0 = ρε̇ + p∇x·v

= ρ
∂ε

∂ρ

∣∣∣∣∣
p
ρ̇ + ρ

∂ε

∂p

∣∣∣∣∣
ρ

ṗ + p∇x·v

= ρ
∂ε

∂p

∣∣∣∣∣
ρ

ṗ +

p
ρ
− ρ ∂ε

∂ρ

∣∣∣∣
p

∂ε
∂p

∣∣∣∣
ρ

∇x·v

 , (17)
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where, for a general compressible flow, ρ ∂pε
∣∣∣
ρ
, 0. It is pos-

sible to further manipulate the previous result using thermody-
namic identities. First note that, by standard calculus deriva-
tions, (

∂ε

∂p

∣∣∣∣∣
ρ

)−1

=
∂p
∂ε

∣∣∣∣∣
ρ
. (18)

By the Gibbs identity (i.e., the combined first and second law of
thermodynamics) dε − p/ρ2dρ = θdη (θ being the temperature
and η the entropy per unit mass),

p
ρ

= ρ
∂ε

∂ρ

∣∣∣∣∣
η

. (19)

Combining (18) and (19) in the term multiplying the divergence
in (17) yields

p
ρ
− ρ ∂ε

∂ρ

∣∣∣∣
p

∂ε
∂p

∣∣∣∣
ρ

= ρ
∂p
∂ε

∣∣∣∣∣
ρ

(
∂ε

∂ρ

∣∣∣∣∣
η

−
∂ε

∂ρ

∣∣∣∣∣
p

)

= ρ

(
∂p
∂ε

∣∣∣∣∣
ρ

∂ε

∂ρ

∣∣∣∣∣
η

−
∂p
∂ε

∣∣∣∣∣
ρ

∂ε

∂ρ

∣∣∣∣∣
p

)
(20)

Equation (20) can be further simplified recalling that a thermo-
dynamic relation of the type p = p̂(ρ, ε) yields

dp =
∂p
∂ρ

∣∣∣∣∣
ε

dρ +
∂p
∂ε

∣∣∣∣∣
ρ

dε , (21)

and, particularly,

0 =
∂p
∂ρ

∣∣∣∣∣
p

=
∂p
∂ρ

∣∣∣∣∣
ε

+
∂p
∂ε

∣∣∣∣∣
ρ

∂ε

∂ρ

∣∣∣∣∣
p
. (22)

Substituting (22) into (20) yields

p
ρ
− ρ ∂ε

∂ρ

∣∣∣∣
p

∂ε
∂p

∣∣∣∣
ρ

= ρ

(
∂p
∂ε

∣∣∣∣∣
ρ

∂ε

∂ρ

∣∣∣∣∣
η

−
∂p
∂ε

∣∣∣∣∣
ρ

∂ε

∂ρ

∣∣∣∣∣
p

)

= ρ

(
∂p
∂ε

∣∣∣∣∣
ρ

∂ε

∂ρ

∣∣∣∣∣
η

+
∂p
∂ρ

∣∣∣∣∣
ε

)
= ρ

∂p
∂ρ

∣∣∣∣∣
η

= ρc2
s , (23)

where cs is the isentropic speed of sound in the medium. Hence
(17) reduces to

0 = ρ
∂ε

∂p

∣∣∣∣∣
ρ

(
ṗ + ρc2

s∇x·v
)
. (24)

The term ρ ∂pε
∣∣∣
ρ
, 0 can be simplified in (24), and the mo-

mentum and energy equations can be combined into the mixed,
first-order system form of a nonlinear wave equation in v and
p:

0 = ρv̇ + ∇xp , (25)

0 = ṗ + ρc2
s∇x·v . (26)

Remark1. It is important to recognize the relation between
∂pε

∣∣∣
ρ

and the Grüneisen parameter [47], defined as

Γ =
1

ρ
∂ε

∂p

∣∣∣∣∣
ρ

=
1
ρ

∂p
∂ε

∣∣∣∣∣
ρ
. (27)

The thermodynamic parameter Γ varies only mildly with the
thermodynamic state of a fluid system, unless phase transitions
occur [47]. In the case of an ideal gas satisfying a γ-law equa-
tion of state, it is easy to derive Γ = γ − 1 = constant.

2.3. Linearization of the equations
A linearized version of the shock hydrodynamic equations is

developed next. This simplified setting is valuable in allowing
a clearer understanding of the stabilization mechanisms to be
discussed in what follows. For this purpose, the small-strain
approximation is adopted, which implies small values of the
displacement, velocity and acceleration, namely:

v = ṽ << 1 , (28)

u = ũ << 1 . (29)

In particular, the small-strain approximation allows for the sim-
plification ∇x ≈ ∇X (the motion of the mesh is neglected when
computing gradients). Assume also that the solution for the
thermodynamic variables (density, pressure, internal energy)
is given by a small perturbation of constant reference fields,
namely:

ρ = ρ̄ + ρ̃, ρ̄ = const., ρ̃ << 1 , (30)

p = p̄ + p̃, p̄ = const., p̃ << 1 , (31)

cs = c̄s + c̃s, c̄s = const., c̃s << 1 . (32)

Hence, neglecting quadratic and higher-order terms, the lin-
earized version of (25)–(26) is given by:

ρ̄ ˙̃v + ∇X p̃ = 0 , (33)

˙̃p + ρ̄ c̄2
s ∇X ·ṽ = 0 , (34)

which correspond to (25)–(26) with constant coefficients. Sim-
ilar linearization procedures, applied to the displacement equa-
tions (5) and the differential form of the mass conservation
equation (16), yield

˙̃u = ṽ , (35)
˙̃ρ + ρ̄∇X ·ṽ = 0 . (36)

Therefore, the linearized mass and displacement equations de-
couple from the linearized momentum and energy equations.

Remark2. In what follows, for the sake of simplicity, we will
drop the “tildes” and “bars” from equations (33)–(34).

Taking the sum of the divergence of the momentum equation
(33) and the time derivative of the energy equation (34) yields

0 = p̈ − c2
s∆X p , (37)
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where ∆X(·) = ∇X· (∇X(·)) is the Laplace operator. Taking instead
the sum of the time derivative of the momentum equation and
the gradient of the energy equation,

0 = v̈ − c2
s∆Xv . (38)

Therefore, the pressure and each of the velocity components
abide a wave equation, with speed of propagation of distur-
bances given by cs.

3. Variational multiscale analysis

Although the method presented here was originally devel-
oped in the nonlinear case, the linearized setting is probably the
best starting point for introducing the main concepts. The vari-
ational multiscale analysis assumes that fine scales are small
with respect to the coarse scales, in some integral sense. As
a consequence, this approach applies naturally to smooth flow
fields, and is less appropriate in the presence of solution discon-
tinuities. This point is of particular importance in the nonlinear
case, for which variational multiscale operators are based on a
locally linearized approach.

3.1. The linearized problem
The displacement and mass equations will not be discussed,

since, as already pointed out in Section 2.3, they decouple from
the momentum and energy equations.

3.1.1. Variational equations
Neglecting body forces, heat fluxes, and heat sources, and

assuming, without loss of generality, homogeneous Dirichlet
boundary conditions for the velocity, the variational statement
of (33)–(34), can be expressed as:

Find p ∈ Sγ, v ∈ Sκ, such that, ∀ψ ∈ Vγ, ∀ψ ∈ Vκ,

0 =

∫
Ω0

ψ · (ρv̇) dΩ0 −

∫
Ω0

∇X · ψ p dΩ0 , (39)

0 =

∫
Ω0

ψ
(
ṗ + ρc2

s ∇X · v
)

dΩ0 , (40)

where ρ and cs are assumed constant. In particular, Sκ denotes
the trial space of admissible values for the kinematic variables
(velocities, in this case, with boundary conditions strongly em-
bedded in the function space definition), and Sγ the trial space
of admissible thermodynamic states (pressures). In addition,
test spaces have been introduced: Vκ is the space of variations
for the kinematic variables (compatible with the boundary con-
ditions), and Vγ is the space of variations for the thermody-
namic variables.

3.1.2. Scale decomposition
The variational multiscale analysis of (39)–(40) is accom-

plished by decomposing the exact solution state vector Y =

[vT , p]T ∈ S as Y = Yh + Y′. Yh ∈ Sh is the mesh- or coarse-
scale solution, belonging to the discrete approximation space
Sh. Y′ ∈ S′ is the subgrid- or fine-scale solution, the compo-
nent of the solution not represented on the computational mesh.

Hence, S = Sh
⊕
S′ (here

⊕
does not denote an orthogo-

nal sum decomposition), and analogously, V = Vh
⊕
V′. In

view of the adopted boundary conditions, the following choice
of function spaces can be made

Sh
κ = Vh

κ =

{
ψh ∈ (C0(Ω0))nd : ψh

∣∣∣
Ω0;e
∈ (P1(Ω0;e))nd ,

ψh = 0 on ∂Ω
g
0 = ∂Ω0

}
, (41)

Sh
γ = Vh

γ =

{
ψh ∈ C0(Ω0) : ψh

∣∣∣
Ω0;e
∈ P1(Ω0;e),

}
, (42)

where P1(Ω0;e) is the space of piece-wise linear polynomials
over the element e, nd is the number of space dimensions, and
homogeneous Dirichlet boundary conditions have been incor-
porated (strongly) into the definition of the function spaces. We
obtain

v = vh + v′ , (43)

p = ph + p′ , (44)

so that (39)–(40), when tested on Vh
κ and Vh

γ, respectively, re-
duce to∫

Ω0

ψh · ρ(v̇h + v̇′) dΩ0 −

∫
Ω0

(∇X · ψ
h)(ph + p′) dΩ0 = 0 ,

(45)

and ∫
Ω0

ψh
(
ṗh + ṗ′ + ρ c2

s(∇X · (vh + v′)
)

dΩ0 = 0 . (46)

Using integration by parts, equation (46) can be rearranged as∫
Ω0

ψh
(
ṗh + ṗ′ + ρ c2

s (∇X · vh)
)

dΩ0

−

∫
Ω0

∇X ψ
h ·

(
ρ c2

s v′
)

dΩ0

+

nel∑
e=1

∫
∂Ω0;e

ψh
(
ρ c2

s v′
)
· ne d(∂Ω0;e) = 0 , (47)

where ne indicates the outward pointing normal with respect
to the element e, and nel the total number of elements in the
mesh. Recalling now that ψh is continuous across the inter-
face between elements, and that ρ and cs are constant in the
linearized case, one can express the last term in (47) using the
following identity, often employed in discontinuous Galerkin
formulations:

nel∑
e=1

∫
∂Ω0;e

ψh
(
ρ c2

s v′
)
· ne d(∂Ω0;e)

=

∫
∂Ω0

ψh
(
ρ c2

s v′
)
· n d(∂Ω0) +

∫
Ẽ0

ψh ρ c2
s [[v′]] dẼ0 .

(48)

The term [[w]] = w− ·n−+w+ ·n+ is often referred to as the jump
operator, with the superscripts ± indicating the values of w and
n on either side of an interface between two elements (i.e., an

5



edge or face in the interior of the domain). Ẽ0 denotes the set
of interior element interfaces, in the initial configuration of the
mesh. Note that no approximation has been made so far (the
fields vh, v′, ph, p′ are assumed to be known exactly). In order
to obtain a viable stabilization strategy, a few conditions on the
terms in the coarse-scale equations are required. Some of the
conditions have a straightforward justification, while others are
dictated by simplicity and ease of implementation.

Coarse-scale conditions

(i) Time derivatives of the fine-scales are neglected. This
quasi-static approximation is equivalent to assuming that
the fine scales adjust instantaneously to complement the
coarse scales. Some authors [16] have been arguing in
favor of tracking in time the subgrid-scale component of
the solution. However, this would involve the additional
computational cost of storing and integrating in time the
fine-scale component of the state variables.

(ii) For smooth flows, one can expect that the spaces Sγ,Sκ
are composed of smooth functions (in particular, contin-
uous functions). Recalling that, by definition, Sh

γ,S
h
κ are

discrete spaces of continuous functions, we can conclude
that, for smooth flows, also S′γ,S

′
κ are constituted of con-

tinuous functions. The condition∫
Ẽ0

ψh [[v′]] dẼ0 = 0 , (49)

representing a weak enforcement of the continuity of v′
across element interfaces, is automatically satisfied in this
case.

(iii) Analogously, the condition∫
∂Ω0

ψhv′ · n d(∂Ω0) = 0 (50)

is weakly enforcing a vanishing fine-scale solution at the
boundary of the domain Ω0, where boundary conditions
apply. This is again a fairly standard hypothesis in varia-
tional multiscale formulations [26, 27, 33].

With the previous assumptions, (45) and (48) reduce to:∫
Ω0

ψh · (ρ v̇h) dΩ0 −

∫
Ω0

(∇X · ψ
h)(ph + p′) dΩ0 = 0 , (51)∫

Ω0

ψh
(
ṗh + ρ c2

s (∇X · vh)
)

dΩ0

−

∫
Ω0

∇X ψ
h ·

(
ρ c2

s v′
)

dΩ0 = 0 . (52)

The variational multiscale approach now requires to test the
momentum and energy equations on the fine-scale spaces, that
is,∫

Ω0

ψ′ · (ρv̇′) dΩ0 −

∫
Ω0

(∇X · ψ
′)p′ dΩ0 = −〈Resh

v ,ψ
′〉 , (53)∫

Ω0

ψ′
(
ṗ′ + ψ′ ρ c2

s (∇X · v′)
)

dΩ0 = −〈Resh
ε , ψ

′〉 , (54)

where Resh
v and Resh

p are operators belonging to the dual
spaces (S′κ)

∗ and (S′γ)∗, the spaces of continuous linear func-
tionals over S′κ and S′γ, respectively. Recalling that, by defi-
nition, the test functions vanish where pure Dirichlet boundary
conditions are applied, and that the discrete test and trial spaces
are constituted of continuous functions (so that inter-element
jumps vanish) the residual operators have the expressions:

〈Resh
v ,w〉 =

∫
Ω0

w · (ρhv̇h) dΩ0 −

∫
Ω0

(∇X · w)ph dΩ0

=

∫
Ω0

w ·
(
ρhv̇h + ∇X ph

)
dΩ0 , (55)

〈Resh
ε ,w〉 =

∫
Ω0

w
(
ṗh + ρ c2

s (∇X · vh)
)

dΩ0 . (56)

Assuming (as usually reasonable) that S′κ ⊂ (L2(Ω0))nd and
S′γ ⊂ L2(Ω0) (i.e., w and w are Lebesgue square-integrable
functions), the Riesz Representation Theorem [7, 68] allows to
identify

Resh
v = ρ v̇h + ∇X ph , (57)

Resh
p = ṗh + ρ c2

s (∇X · vh) , (58)

where Resh
v and Resh

p are now considered as elements of
(L2(Ω0))nd and L2(Ω0), respectively. Ideally, one would like
to solve exactly the fine-scale equations, but, in practice, this
is rarely possible and, for the purpose of stabilization, unneces-
sary. In fact, simple approximated ansatz based on the scaling
of the residual are sufficient to provide the needed stabilization
mechanisms.

Fine-scale conditions

(iv) Probably the simplest option is to assume that

v′ = −τ
1
ρ

Resh
v , (59)

p′ = −τ Resh
p , (60)

where τ is an appropriate parameter with the dimension of
time. This amounts to postulate that the dynamics of the
fine scales decouples, as the fine-scale velocity v′ is as-
sumed to depend only on the momentum equation residual
Resh

v , and the fine-scale pressure p′ only on the pressure
equation residual Resh

p. The factor 1/ρ in front of Resh
v is

needed for a correct dimensional scaling of v′. A unique
definition of τ is used for both the pressure and velocity
equations, governing the propagation of acoustic waves.
Because the coarse-scale momentum and pressure equa-
tions are tightly coupled, using different definitions of τ
in each of them may have potentially negative effects on
the dissipation and dispersion error characteristics of the
stabilized algorithm.

(v) Using criteria similar to [52, 53, 56], the stabilization pa-
rameter τ can be defined as

τ = cτ
∆t
2
. (61)
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In practice, τ represents the average effect of the Green’s
function associated with the fine-scale equations [8, 26,
27, 33]. For the purpose of constructing stabilization
mechanisms, it is not necessary to have a very accurate
approximation of the Green’s function, and a correct scal-
ing is sufficient. Consequently, there is some freedom in
defining the constant cτ. An effective choice of cτ depends
on the particular spatial and temporal discretization, and a
complete discussion on how to estimate appropriate values
using the von Neumann analysis of dissipation and disper-
sion errors is presented in Section 6.

Remark3. Similar results would have been obtained if the
standard SUPG methodology for systems of equations were
used in place of the multiscale analysis (see [15, 52, 53]). In
fact, it is possible to rewrite equations (39)–(40) as

A0Ẏ + Ai Y,Xi = 0 , (62)

where Y = [vT , p]T , and

A0 =

[
ρI3×3 03×1
01×3 1

]
, (63)

Ai =


0 0 0 δ1i

0 0 0 δ2i

0 0 0 δ3i

ρ c2
sδ1i ρ c2

sδ2i ρ c2
sδ3i 0

 , (64)

with δi j the Kronecker tensor (δi j = 1 if i = j, δi j = 0 oth-
erwise). The stabilization proposed in [15, 52, 53] follows a
methodology similar to [22, 23, 28, 29, 31, 32] and yields:

Y′ = −τ(A0Ẏ + Ai Y,Xi ) = −τ(Ẏ + A−1
0 Ai Y,Xi ) , (65)

where τ = τA−1
0 , so that

Ẏ + A−1
0 Ai Y,Xi =

[ 1
ρ
Resh

v
Resh

p

]
. (66)

The fundamental reason why these derivations match the previ-
ous multiscale analysis is due to the fact that τ has been chosen
as a diagonal matrix. The precise definition of τ is somewhat ar-
bitrary, and many different approaches to its design have been
proposed [15, 22, 23, 28, 29, 31, 32, 34, 38, 52, 53, 63, 64].
Had not τ been diagonal, a fully coupled residual ansatz for
Y′ would have been obtained. This aspect is a consequence of
the connection between τ and the Green’s function for the fine-
scale equations [26, 27, 33]. In the discussion to follow on the
nonlinear case, it will be easy to appreciate that the variational
multiscale approach and the more classical instantiations of the
SUPG method for compressible flows may have some substan-
tial differences in the overall structure of the stabilizing terms.

3.1.3. Stability properties
In [15], a numerical stability analysis is presented for a

SUPG-stabilized method applied to the system form of a gen-
eral linear hyperbolic wave equation. Although the present
work and the work in [15] have been developed over the years

in complete independence and aiming at different applications,
there are similarities in the form of the stabilizing operators,
at least in the linear case. Most importantly, the detailed sta-
bility analysis – for the time-continuous case in multiple di-
mensions – included in [15] directly applies to the linearized
acoustic system under investigation in the present article. This
result and the classical stability analysis of SUPG methods for
compressible flows [28–30, 35, 36, 62] show that the proposed
variational multiscale approach provides stability to formula-
tions with equal-order interpolation for pressure and velocity in
the linearized case. Consequently, the nonlinear method to be
described next lays on solid theoretical foundations. It is worth-
while at this point to present the overall stabilized variational
form of the linearized acoustic problem:

0 =

∫
Ω0

ψh · ρv̇h dΩ0 −

∫
Ω0

(∇X · ψ
h)ph dΩ0

+

∫
Ω0

(∇X · ψ
h) τ

(
ṗh + ρ c2

s (∇X · vh)
)

dΩ0 , (67)

0 =

∫
Ω0

ψh
(
ṗh + ρ c2

s (∇X · vh)
)

dΩ0

+

∫
Ω0

∇X ψ
h · c2

s τ
(
ρ v̇h + ∇X ph

)
dΩ0 . (68)

It is clear that the terms∫
Ω0

τ c2
s (∇X · ψ

h)(∇X · vh) dΩ0 , (69)∫
Ω0

τ c2
s ∇X ψ

h · ∇X ph dΩ0 (70)

have a stabilizing effect on equations (67)–(68), since they are
the weak forms of a divergence-type (Hdiv) incomplete Lapla-
cian of the velocity and a full Laplacian of the pressure, respec-
tively. The stability analysis in [15] confirms such conjecture.

It is interesting to observe the terms (69)–(70) scale with
τc2

s , which represents an acoustic-inspired kinematic viscos-
ity. There are therefore some similarities between the stabiliz-
ing terms in (67)–(68) and the so-called linear artificial viscos-
ity [6, 49, 66], used to control acoustic oscillations past shock
fronts. There is however one major difference, since the linear
artificial viscosity approach is not variationally consistent, and
degrades the order of accuracy of the method to first order. In
the case of the stabilized equations (67)–(68), the terms (69)–
(70) do not degrade the original order of accuracy of the method
to first order, since they are complemented by time derivative
terms to form complete, variationally consistent residuals (see
also Section 6 for an analysis of formal order of accuracy).

3.2. The nonlinear problem

The nonlinear case is attacked next. In particular, this section
describes in a more general sense how the variational multiscale
methodology yields stabilization operators. For a practical nu-
merical implementation, the reader should refer to Section 4.
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3.2.1. Variational equations
As in the linear case, the first step in the development of a

variational form for (5)–(8) is to define the trial spaces for the
kinematic and thermodynamic variables, which characterize the
state of the system. Let Sκ denote the space of admissible val-
ues for the kinematic variables (displacements, velocities, ac-
celerations), and Sγ the space of admissible thermodynamic
states (densities, pressures, internal energies). In addition, Vκ

is the (test) space of variations (compatible with the boundary
condition (9)) for the kinematic variables, and Vγ is the (test)
space of variations for the thermodynamic variables. The com-
plete variational problem reads:

Find ρ, p, ε ∈ Sγ, u, v ∈ Sκ, such that, ∀ψ ∈ Vγ, ∀ψ ∈ Vκ,

0 =

∫
Ω0

ψ · (u̇ − v) dΩ0 , (71)

0 =

∫
Ω0

ψ (ρ0 − ρJ) dΩ0 , (72)

0 =

∫
Ω0

ψ · (ρ0v̇) dΩ0 +

∫
Ω

∇s
x ψ : σ dΩ

−

∫
Γh
ψ · t dΓ −

∫
Ω

ψ · (ρb) dΩ , (73)

0 =

∫
Ω0

ψ (ρ0ε̇) dΩ0 −

∫
Ω

ψ
(
∇s

x v : σ + ρr
)

dΩ

+

∫
Ω

∇xψ · q dΩ , (74)

where ∇s
x = 1/2(∇x

T + ∇x) is the symmetric part of the gradi-
ent operator, and σ = −pI, so that ∇s

x ψ : σ = −(∇x ·ψ)p, and
∇s

x v : σ = −(∇x ·v)p. In (73)–(74), we have used the identity
ρ0 dΩ0 = ρ dΩ, which states that the mass of an infinitesimal
particle dm = ρ0 dΩ0 does not change under the Lagrangian
deformation map. In the current formulation, the traction (i.e.,
natural) boundary conditions (10) are imposed in (73) through
the weak form, while the space Sκ incorporates the set of es-
sential boundary conditions (9). Consequently, boundary con-
ditions of kinematic (Dirichlet) type are imposed strongly. The
specific types of function spaces adopted in the formulation will
be given subsequently.

3.2.2. Scale decomposition and stabilization
It is important to observe that the following analysis applies

in the case of smooth flows (smooth solutions), for which the
fine scales are assumed small with respect to the coarse scales.
In particular, in the case of nonlinear systems, the variational
multiscale framework leverages a local linearization of the
equations. As in the linear case, the first step consists in devel-
oping a multiscale description of the solution. For the sake of
simplicity, and without loss of generality, the heat source/sink
r, the body force b, and the thermal heat flux q are assumed ab-
sent. The exact solution for the state Y = [uT , vT , ρ, ε, p]T ∈ S

of the system is decomposed as Y = Yh + Y′, where Yh ∈ Sh is
the mesh- or coarse-scale solution, and Y′ ∈ S′ is the subgrid-

or fine-scale solution, with S = Sh
⊕
S′. In the proposed spa-

tial approximation, all variables (both kinematic and thermody-
namic, including pressure, density and internal energy) are ap-
proximated by piece-wise linear, continuous functions (node-
centered degrees-of-freedom). Consequently, the test-spaces
for the equations consist of piece-wise linear, continuous func-
tions. More precisely:

Sh
κ =

{
ψh ∈ (C0(Ω))nd : ψh

∣∣∣
Ωe
∈ (P1(Ωe))nd ,

ψh = gbc(t) on ∂Ωg
}
, (75)

Vh
κ =

{
ψh ∈ (C0(Ω))nd : ψh

∣∣∣
Ωe
∈ (P1(Ωe))nd ,

ψh = 0 on ∂Ωg
}
, (76)

and

Sh
γ =

{
ψh ∈ C0(Ω) : ψh

∣∣∣
Ωe
∈ P1(Ωe),

}
, (77)

Vh
γ =Sh

γ , (78)

where gbc(t) indicates the generalized essential (Dirichlet)
boundary conditions, possibly dependent on time. For exam-
ple, if Sh

κ is used to approximate displacements, then gbc = ubc.
If instead Sh

κ is used to approximate velocities, then gbc indi-
cates a velocity at the boundary compatible with ubc. Hence:

u = uh + u′ , (79)

v = vh + v′ , (80)

ρ0 = ρh
0 + ρ′0 , (81)

ρ = ρh + ρ′ , (82)

ε = εh + ε′ , (83)

p = ph + p′ . (84)

In the Lagrangian setting, the displacement and mass conser-
vation equations (5)-(6) are associated with a standing entropy
wave (with respect to the Lagrangian material coordinates) gov-
erning the motion of contact discontinuities. In this context,
it is also important to observe that numerical schemes in La-
grangian coordinates, by construction, are capable of precisely
capturing and tracking contact discontinuities without adding
any numerical dissipation. Consequently, the incorporation of
the equations (71)–(72) is not critical in the analysis, which can
be restricted to equations (73) and (74). This simplified ap-
proach has the main advantage of producing a “minimalist sta-
bilization”, of easier numerical implementation. Namely, when
tested on the discrete spaces Vh

κ and Vh
γ, (73) and (74) reduce

to

0 =

∫
Ω0

ψh · (ρh
0 + ρ′0)(v̇h + v̇′) dΩ0

−

∫
Ω

(∇x · ψ
h)(ph + p′) dΩ , (85)

0 =

∫
Ω0

ψh(ρh
0 + ρ′0)(ε̇h + ε̇′) dΩ0

+

∫
Ω

ψh (∇x · (vh + v′))(ph + p′) dΩ , (86)
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where, for the sake of simplicity and without loss of generality,
homogenous Dirichlet boundary conditions are imposed for the
velocity. Using integration by parts, the energy equation (86)
can be rearranged as follows:∫

Ω0

ψh(ρh
0 + ρ′0)(ε̇h + ε̇′) dΩ0 +

∫
Ω

ψh ∇x·vh
(
ph + p′

)
dΩ

−

∫
Ω

∇xψ
h ·

(
(ph + p′)v′

)
dΩ −

∫
Ω

ψh
(
∇x(ph + p′)

)
· v′ dΩ

+

nel∑
e=1

∫
∂Ωe

ψh
(
ph + p′

)
v′ · ne d(∂Ω) = 0 .

(87)

Recalling that ψh is continuous across element interfaces, the
last term in (87) can be expressed as

nel∑
e=1

∫
∂Ωe

ψh
(
ph + p′

)
v′ · ne dΩ =

∫
∂Ω

ψh p v′ · n d(∂Ω)

+

∫
Ẽ

ψh[[pv′]] dẼ , (88)

where, analogous to the linear case, [[w]] = w− · n− + w+ · n+,
and Ẽ is the set of interior element interfaces (this time in the
current configuration mesh). Then (87) becomes∫

Ω0

ψh(ρh
0 + ρ′0)(ε̇h + ε̇′) dΩ0 +

∫
Ω

ψh ∇x·vh
(
ph + p′

)
dΩ

−

∫
Ω

∇xψ
h ·

(
(ph + p′)v′

)
dΩ −

∫
Ω

ψh
(
∇x(ph + p′)

)
· v′ dΩ

+

∫
∂Ω

ψh phv′ · n d(∂Ω) +

∫
Ẽ

ψh[[phv′]] dẼ = 0 .

(89)

From now on, we will focus on the variational forms (85) and
(89). Analogous projections of (85) and (89) onto the fine scale
test spaces V′κ and V′γ can be considered, to generate the fine-
scale problems. No approximation has been made so far, and
the initial geometry of the computational grid, as well as the
displacement field are assumed to be known exactly. In order
to obtain a treatable problem, a number of conditions has to be
enforced on some of the terms in the coarse-scale equations. As
in the linear case, some of these conditions are straightforward,
others are dictated by simplicity and ease of implementation.

Coarse-scale conditions

(i) Fine-scale terms are considered small with respect to
coarse-scale terms. Therefore, if necessary, products of
fine-scale terms can be neglected, being higher-order cor-
rections. This is, essentially, a statement of local lineariza-
tion of the variational problem under consideration.

(ii) Fine-scale components of the displacements u′ (i.e., fine-
scale node positions and mesh geometry) are considered
negligible, with the purpose of a simpler implementation.
Although not pursued here, there is a possibility to quan-
tify these fine-scale contributions.

(iii) ρ′0 is considered negligible, since ρ0 is a datum of the prob-
lem.

(iv) As in the linear case, time derivatives of the fine-scales are
neglected, in favor of a quasi-static approximation.

(v) In order to preserve global conservation properties, we en-
force as a design condition that the last three integral terms
in (89) vanish. Let us review each of these conditions:∫

Ω

ψh
(
∇x(ph + p′)

)
· v′ dΩ = 0 (90)

enforces that the projection onto the test function space
of the inner product between the pressure gradient and
fine-scale velocity vanishes. An equivalent interpretation
is that, in a weak sense, the fine-scale component of the
velocity does not produce any internal work. This condi-
tion can also be understood as the constraint on v′ to be a
zero-energy, hourglass mode [4, 6]. The condition∫

∂Ω

ψh phv′ · n d(∂Ω) = 0 (91)

weakly enforces that the fine-scale velocity does not pro-
duce any work at the boundary ∂Ω of the domain. This
condition is equivalent to imposing that the fine-scale ve-
locity vanishes at the boundary ∂Ω, and, as already men-
tioned in Section 3.1.2, is a standard (often implicit) hy-
pothesis in variational multiscale formulations [26, 27,
33]. Finally, the condition∫

Ẽ

ψh[[phv′]] dẼ = 0 (92)

weakly enforces that the surface work phv′ ·n, produced by
the interaction of the fine-scale velocity and coarse-scale
pressure, is continuous across element interfaces. In the
case of a smooth v, recalling that ph and vh are continuous,
then v′ = v − vh is also continuous, and condition (92) is
automatically satisfied. Condition (92) is often implicitly
invoked in SUPG stabilized formulations for compressible
flows [22, 23, 26–29, 31–33].

Applying the previous conditions, and pushing forward to the
current configuration the integrals in (85) and (87) involving
time derivatives, it is easy to derive:∫

Ω

ψh · (ρhv̇h) dΩ −

∫
Ω

∇x·ψ
h(ph + p′) dΩ = 0 , (93)∫

Ω

ψh
(
ρhε̇h + ph ∇x·vh

)
dΩ +

∫
Ω

ψh p′ ∇x·vh dΩ

−

∫
Ω

∇xψ
h ·

(
phv′

)
dΩ = 0 . (94)

In particular, from the derivation in Section 2.2 (see eq. 24),

ρhε̇h + ph ∇x·vh = ρh ∂ε ph
∣∣∣h
ρ

(
ṗh + ρh (ch

s)2 (∇x· vh)
)
. (95)

Therefore, the variational multiscale stabilization of the nonlin-
ear case retains part of the structure of the linearized case. This
observation is important in designing appropriate approxima-
tions to p′ and v′.
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Remark4. The term ∫
Ω

ψh p′ ∇x·vh dΩ (96)

is not present in the linearized case, and is of fundamental im-
portance in preserving global conservation of total energy in
the nonlinear case. It is also important to notice that this term
would not appear if a standard SUPG approach were applied.
Details on the global conservation properties of the proposed
stabilization approach are presented in Section 5.

The variational multiscale approach now requires to test the
momentum and energy equations on the fine-scale spaces V′κ
andV′γ, that is, ∫

Ω0

ψ′ · (ρh
0 + ρ′0)v̇′ dΩ0

+

∫
Ω0

ψ′ · (ρ′0v̇h) dΩ0

−

∫
Ω

(∇x · ψ
′)p′ dΩ = −〈Resh

v ,ψ
′〉 , (97)∫

Ω0

ψ′(ρh
0 + ρ′0)ε̇′ dΩ0 +

∫
Ω0

ψ′ρ′0ε̇
h dΩ0

+

∫
Ω

ψ′ (∇x · (vh + v′))p′ dΩ

+

∫
Ω

ψ′ (∇x · v′)ph dΩ = −〈Resh
ε , ψ

′〉 , (98)

where, for pure Dirichlet boundary conditions, 〈Resh
v , ·〉 ∈

(S′κ)
∗ and 〈Resh

ε , ·〉 ∈ (S′γ)∗ are defined by pushing forward to
the current configuration and integrating by parts:

〈Resh
v ,w〉 =

∫
Ω

w ·
(
ρhv̇h + ∇x ph

)
dΩ , (99)

〈Resh
ε ,w〉 =

∫
Ω

w
(
ρhε̇h + (∇x · vh)ph

)
dΩ . (100)

As in the linear case, by means of the Riesz Representation
Theorem, it is possible to identify the residual operators with
the following members of the space (L2(Ω))nd , and L2(Ω), re-
spectively:

Resh
v = ρhv̇h + ∇xph , (101)

Resh
ε = ρhε̇h + (∇x · vh)ph . (102)

We now need to make further assumptions about the subgrid
dynamics, to obtain a treatable fine-scale problem. The funda-
mental idea is to explore a simple solution ansatz, inspired by
the results already obtained in the linear wave propagation case.

Fine-scale conditions

(vi) Recalling the structure of the momentum equation (25),
we can assume the following structure for the fine-scale
velocity:

v′ = −τρh (ch
s)2

ph

∂ε

∂p

∣∣∣∣∣h
ρ

Resh
v , (103)

where τ is defined as in (61). This produces the stabilizing
term

phv′ = −ρh ∂ε

∂p

∣∣∣∣∣h
ρ

τ(ch
s)2 Resh

v , (104)

in the coarse-scale energy equation (94). The specific scal-
ing in front of the momentum residual in (103) (and also
(104)) is chosen so that the stabilized formulation respects
the structure of the nonlinear wave problem analyzed in
Section 2.2. This observation becomes more clear when
looking at the final form of the stabilizing operators, to be
presented momentarily.

(vii) Recalling the structure of the energy equation (26), we
have that Resh

ε = ρh ∂pε
∣∣∣h
ρ

Resh
p, with

Resh
p = ṗh + ρh(ch

s)2 ∇x·vh . (105)

It was shown in [56] that the expression for Resh
p can also

be derived by considering isentropic processes in perfect
materials (materials free from internal dissipation mecha-
nisms). It was also observed in [55, 56] that Resh

p mea-
sures the production of entropy due to the numerical dis-
cretization. In regions of smooth flow, Resh

p should van-
ish, but because of algorithmic instabilities, entropy can be
numerically generated. At this point, it becomes natural to
use the pressure residual to build an approximation to the
fine-scale pressure as follows:

p′ = −τ Resh
p . (106)

It was shown in [56] that the same approximation can be
obtained by taking the difference p′ = p− ph and lineariz-
ing the equation of state p = p̂(ρ, ε) about ph. Because
the system of equations at hand has the structure of a non-
linear wave equation, it makes sense to use the same pa-
rameter τ in both the momentum and energy equations (see
also Section 6 for more details on this interpretation from
the point view of the von Neumann analysis of stability).

Remark5. In [56], the variational multiscale approach was
used to stabilize formulations with piece-wise constant thermo-
dynamic variables, enriching the discrete pressure by a fine-
scale pressure defined as in (106). In the present approach, we
also add the contribution of the fine-scale velocity v′ to stabilize
the energy equation.

Remark6. By definition, the terms v′ and p′ vanish at pure
contact discontinuities, where the pressure and velocity are con-
stant in space and time, and perfectly matched (equal) across
the contact interface. Therefore, interpreting the term phv′ as
an artificial heat flux would be utterly incorrect. This term, in-
stead, represents the work produced by the interaction between
the fine-scale velocity and the coarse-scale pressure.

Remark7. When shock waves are present in the material, the
analysis just presented does not apply. From a physical point
of view, a shock wave is an infinitely thin layer in which the
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flow does not behave as a perfect material, due to internal dis-
sipation mechanisms. At the numerical level, these irreversible
mechanisms are introduced by shock-capturing operators in the
form of artificial viscosities, which smear the discontinuity over
a few cells of the computational grid.

Recalling that Resh
ε = ρh ∂pε

∣∣∣h
ρ

Resh
p and collecting terms,

(93)–(94) can also be written as

0 =

∫
Ω

ψh · (ρhv̇h) dΩ −

∫
Ω

∇x·ψ
h ph dΩ +∫

Ω

∇x·ψ
h τ

(
ṗh + ρh(ch

s)2 ∇x·vh
)

dΩ , (107)

0 =

∫
Ω

ρh ∂ε

∂p

∣∣∣∣∣h
ρ

(
ψh

(
ṗh + ρh(ch

s)2 ∇x·vh
))

dΩ +∫
Ω

ρh ∂ε

∂p

∣∣∣∣∣h
ρ

(
τ (ch

s)2 ∇xψ
h ·

(
ρhv̇h + ∇xph

))
dΩ +∫

Ω

ψh ∇x·vh τ
(
ṗh + ρh(ch

s)2 ∇x·vh
)

dΩ . (108)

Equations (107)–(108) do not represent the practical implemen-
tation of the proposed method (see instead Section 4), but are
very insightful in the interpretation of the stabilization mech-
anisms introduced. In fact, it is easy to appreciate that (107)
bears striking similarities to (67). The first two terms in equa-
tion (108) resemble the terms in (68) scaled by ρh ∂pε

∣∣∣h
ρ
. Also

note that for an ideal gas

ρh ∂pε
∣∣∣h
ρ

= 1/(γ − 1) , (109)

and the connection between (108) and its linear counterpart (68)
is even more stringent. Stabilization is provided by the term∫

Ω

τ (ch
s)2ρh

(
∇x·ψ

h
) (
∇x·vh

)
dΩ , (110)

in the momentum equation (107), and by the terms∫
Ω

τ(ch
s)2 ρh ∂ε

∂p

∣∣∣∣∣h
ρ

(
∇xψ

h · ∇xph
)

dΩ , (111)∫
Ω

τ(ch
s)2 ψh ρh

(
∇x·vh

)2
dΩ , (112)

in the energy equation (108). As in the linear wave propaga-
tion case, these stabilizing terms are scaled by the acoustic-
type kinematic viscosity τ(ch

s)2. Analogous to the linear case,
since the stabilized formulation is residual-based and variation-
ally consistent, it does not produce a degradation of the order
of accuracy, as shown in Section 6.

The value cτ = 2 (for which τ = ∆t, see Section 3.1.2) seems
to give best results in the nonlinear computations using the al-
gorithm described in Section 4. The von Neumann analysis of
stability documented in Section 6 shows that this choice corre-
sponds to very low dispersion error in the linearized version of
such algorithm.

4. A predictor/multi-corrector time integrator

This section provides a specific implementation of the varia-
tional multiscale approach, using an explicit iterative time inte-
grator, derived by applying a predictor/multi-corrector strategy
to the well-known mid-point method. The proposed formula-
tion conserves mass, momentum and total energy without re-
sorting to any staggered approach in time, and stems from pre-
vious work in [56] (and also from similar ideas developed in the
context of mimetic or compatible discretizations [3, 14]).

The time discretization is directly applied to the formulation
given by equations (71)–(74). The time step is indicated by ∆t,
and the mid-point value of a quantity f is defined as:

fn+1/2 =
fn + fn+1

2
, (113)

where fn = f (tn).
The function spaces are given by (75)–(78). Note that in con-

trast with previous work in [53], the density is also expressed
with piece-wise linear continuous functions.

For the sake of generality, the term σ̃ is used in place of σ,
denoting the generalized symmetric algorithmic stress tensor

σ̃ = −phI + σvms + σart , (114)

where σvms is a variational multiscale stabilizing stress tensor,
and σart is an artificial viscosity stress tensor, designed to cap-
ture shock layers. Analogously, q̃ is used in place of q, to de-
note the algorithmic flux vector,

q̃ = qh + λvms + λart , (115)

where λart is an artificial, shock-capturing vector flux, and λvms

is a variational multiscale stabilizing vector flux. Both σvms

and λvms are residual-based quantities. Specific derivations and
definitions for the terms σ̃ and q̃ will be given in subsequent
sections. For reasons that will become completely clear sub-
sequently (see Section 4.3 and Section 4.4), λvms and λart do
not possess the structure of heat fluxes, and this terminology is
therefore inappropriate. For the sake of simplicity, in the dis-
cussion that follows, it is assumed that the body force b, the
heat flux qh and the heat source/sink r are absent.

4.1. A point of departure: The mid-point integrator

The predictor/multi-corrector approach pursued here stems
from a classical, implicit, mid-point time integrator. In par-
ticular, the predictor/multi-corrector scheme is equivalent to a
fixed-point iterative solution strategy of the nonlinear system of
equations associated with the mid-point method. It is then im-
portant to briefly summarize the discrete equations associated
with the latter before attacking the presentation of the former.
In this section, with slight abuse of notation, the superscript
“h” - denoting numerical discretization - is omitted from the
solution variables, discrete gradient operators, and the domain
geometry.
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4.1.1. Momentum balance
Discretizing (73) in time yields:
Find v ∈ Sh

κ , such that, ∀ψh ∈ Vh
κ ,

0 =

∫
Ω0

ψh · ρ0 (vn+1 − vn) dΩ0

+ ∆t
∫

Ωn+1/2

(∇xψ
h)n+1/2 : σ̃n+1/2 dΩ

− ∆t
∫

Γh
n+1/2

ψh · tn+1/2 dΓ , (116)

where the physical traction t acts only on the Neumann bound-
ary (i.e., t|Γg = 0). The variational form (116) yields the fol-
lowing discrete equations, for the nodal vector v of velocity
degrees-of-freedom:

[Mv] (vn+1 − vn) + ∆t Fn+1/2 = 0 , (117)

where mass lumping has been applied to

[Mv] = [diag(M0,M0,M0)] , (118)

a diagonal [(nd × nnp)× (nd × nnp)]-matrix (nnp is the number of
nodes in the mesh). Specifically, using NA to indicate the shape
function associated with node A in the global node numbering,
the vector M0 is defined as

M0 = {M0;A} , (119)

M0;A =

∫
Ω0

NAρ0 dΩ0 . (120)

Analogously, Fn+1/2 is a (nd × nnp)-vector:

Fn+1/2 ={Fn+1/2;A} , (121)

Fn+1/2;A =

∫
Ωn+1/2

σ̃n+1/2(∇x NA)n+1/2 dΩ −

∫
Γn+1/2

NA tn+1/2 dΓ .

(122)

4.1.2. Energy balance
Discretizing (74) in time yields:
Find ε ∈ Sh

γ, such that, ∀ψh ∈ Vh
γ,

0 =

∫
Ω0

ψhρ0 (εn+1 − εn) dΩ0

− ∆t
∫

Ωn+1/2

ψh (∇xv)n+1/2 : σ̃n+1/2 dΩ

−

∫
Ωn+1/2

∇xψ
h · q̃n+1/2 dΩ , (123)

so that an update equation for the nodal vector ε of internal
energy degrees-of-freedom can be derived:

[Mε] (εn+1 − εn) + ∆t Wn+1/2 = 0 , (124)

where [Mε] = [diag(M0)], and Wn+1/2 is a nnp-dimensional vec-
tor defined as

Wn+1/2 ={Wn+1/2;A} , (125)

Wn+1/2;A = −

∫
Ωn+1/2

NA (∇xv)n+1/2 : σ̃n+1/2 dΩ

+

∫
Ωn+1/2

(∇x NA) · q̃n+1/2 dΩ . (126)

4.1.3. Mass balance
The mass conservation equation (72) can be slightly rear-

ranged to yield:
Find ρ ∈ Sh

γ, such that, ∀ψh ∈ Vh
γ,∫

Ω0

ψhρ0 dΩ0 =

∫
Ω0

ψhρJ dΩ0 =

∫
Ω

ψhρ dΩ . (127)

Testing the previous equation using nodal shape functions
yields

[Vn+1]ρn+1 = M0 , (128)

where ρn+1 is the vector of nodal degrees-of-freedom for the
density at tn+1, that is,

ρn+1 = {ρn+1;A} , (129)

and [Vn+1] = [diag(Vn+1)] is the diagonal matrix of (lumped)
nodal volumes, with

Vn+1 = {Vn+1;A} , (130)

Vn+1;A =

∫
Ω0

NAJn+1 dΩ0 =

∫
Ωn+1

NA dΩ . (131)

Remark8. Following the finite-volume method nomenclature,
the interpretation of {Vn+1} is analogous to a vector of (nodal)
co-volumes.

4.1.4. Displacement equations
Positions are updated from velocities using a weak projec-

tion, rather than using a set of ordinary differential equations
for the nodal positions. The time-discretization of the rate equa-
tions for the position yields:

Find u ∈ Sh
γ, such that, ∀ψh ∈ Vh

γ,∫
Ω0

ψh · (un+1 − un) dΩ0 − ∆t
∫

Ω0

ψh · vn+1/2 dΩ0 = 0 . (132)

The vector u of nodal displacements can be computed with an
explicit procedure very similar in structure to the discrete mo-
mentum update:

un+1 − un − ∆t v̂n+1/2 = 0 , (133)

with

v̂n+1/2 = {v̂n+1/2;A} , (134)

v̂n+1/2;A = V−1
0;A

(∫
Ω0

NAvn+1/2 dΩ0

)
. (135)

Note that in the displacement update (133), the inverse of a
lumped volume matrix is premultiplied by the vector of nodal
positions, and the velocities are tested against the nodal shape
functions. This choice was preferred in [53] to the simpler (and
more efficient) approach of integrating in time ordinary differ-
ential equations for the nodal displacements, namely

un+1 − un − ∆t vn+1/2 = 0 , (136)
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due to superior results in terms of mesh smoothness. In a num-
ber of tests with the proposed new method, not reported here
for the sake of brevity, it was observed that both (133) and
(136) performed well, with only slight improvements in mesh
smoothness in the case of (133). The numerical tests in Section
7 were performed using (133).

Remark9. An early attempt to apply the proposed displace-
ment update to the more traditional finite element method in
[56] (i.e., with thermodynamic variables constant on element
interiors) proved disastrous. In fact, a number of basic tests
performed with this combination could not be run to comple-
tion due to inversion of some of the element volumes. This fact
seems to indicate that the proposed displacement update is ef-
fective only in the context of piece-wise linear approximation
of thermodynamic variables.

4.1.5. Equation of state
The equation of state is evaluated at each time step at the

nodal points, and a nodal pressure is computed as a function of
nodal internal energy and nodal density:

σn+1 = −pn+1I = −p̂(ρn+1, εn+1)I . (137)

A piece-wise continuous pressure field is then interpolated from
the vector p of pressure nodal values. Therefore, we can write a
discrete form of the pressure degrees-of-freedom update equa-
tion as follows:

pn+1 = p̂(ρn+1, εn+1) . (138)

4.2. A fixed-point, predictor/multi-corrector
The algorithm developed in Section 4.1 requires the inver-

sion of a matrix: The force and work terms are computed at the
mid-point in time, and necessitate knowledge of the solution at
time tn+1. However, a fully explicit procedure can be recov-
ered by resorting to a predictor/multi-corrector approach. For
this purpose, a number of preliminary definitions are needed.
The state of the system at time t = t• is defined by means of
the vector Y• = [uT

• , v
T
• , ρ

T
• , ε

T
• ,p

T
• ]T . As described in Table 1,

the proposed approach consists of a velocity update, followed,
in order, by internal energy, position, density and pressure (or,
more generally, stress) updates. F(i)

n+1/2 indicates the evaluation
of Fn+1/2 using the state Y at iterate (i). The definition of the
iterate of the work vector W(i,i+1)

n+1/2 is somewhat different, since

W(i, j)
n+1/2 ={W(i, j)

n+1/2;A} , (139)

W(i, j)
n+1/2;A = −

∫
Ω

(i)
n+1/2

NA ((∇x)
(i)
n+1/2v( j)

n+1/2) : σ̃(i)
n+1/2 dΩ

+

∫
Ω

(i)
n+1/2

(
(∇x)

(i)
n+1/2NA

)
· q̃(i)

n+1/2 dΩ . (140)

Here (∇x)
(i)
n+1/2 and v( j)

n+1/2 indicate the (current configuration)
gradient operator and the velocity field at t = tn+1/2 and iterate i
and j, respectively. In the case of the proposed predictor correc-
tor, j = i + 1. This notation is needed to understand how con-
servation is enforced at each iteration of the predictor/multi-
corrector procedure.

Table 1: Outline of the predictor/multi-corrector algorithm. Note that, because
of mass lumping, all matrices are diagonal, so that all inverse operations are
just vector divisions. Three iterations were typically used in the computations.

Retrieve loop parameters: nstep, imax

Initialize all variables with initial conditions
Form M0, [Mv], and [Mε]
For n = 0, . . . , nstep (Time-step loop begins)

Set ∆t (respecting the CFL condition)

Predictor: Y(0)
n+1 = Yn

For i = 0, . . . , imax − 1 (Multi-corr. loop begins)
Assembly: F(i)

n+1/2

Velocity update: v(i+1)
n+1 = vn − ∆t[Mv]−1F(i)

n+1/2

Assembly: W(i,i+1)
n+1/2

Energy update: ε(i+1)
n+1 = εn − ∆t [Mε]−1W(i,i+1)

n+1/2

Position update: u(i+1)
n+1 = un + ∆t v̂(i+1)

n+1/2

Volume update: V(i+1)
n+1 = V

(
u(i+1)

n+1

)
Density update: ρ(i+1)

n+1 = [V(i+1)
n+1 ]−1M0

Pressure update: p(i+1)
n+1 = p̂

(
ρ(i+1)

n+1 , ε
(i+1)
n+1

)
End (Multi-corrector loop ends)

Time update: Yn+1 = Y(imax)
n+1

End (Time-step loop ends)
Exit

4.3. Implementation of the variational multiscale stabilization
Recalling the structure of the algorithmic stress (114) and the

algorithmic vector flux (115), we have:

σvms = −p′I , (141)

λvms = phv′ , (142)

where equations (141) and (142) correspond to equation (106)
and (104), respectively. Then, we just need to discretize in time
(106) and (104). In the context of the proposed predictor/multi-
corrector method, this amounts to setting

p′ = −τ
(
Resh

p

)(i)

n+1/2
, (143)

v′ = −τ

(
ρ
∂ε

∂p

∣∣∣∣∣
ρ

c2
s

p

)h;(i)

n+1/2

(
Resh

v

)(i,i+1)

n+1/2
, (144)

with (
Resh

p

)(i)

n+1/2
=

ph;(i)
n+1 − ph

n

∆t
+ (ρ c2

s ∇x · v)h;(i)
n+1/2 , (145)

(
Resh

v

)(i,i+1)

n+1/2
= ρh;(i)

n+1/2

vh,(i+1)
n+1 − vh

n

∆t
+ (∇xp)h;(i)

n+1/2 . (146)

The definition of the stabilization parameter is slightly different
from the one given in (61):

τ = cτ
∆t
2

CFLnominal

CFLactual
. (147)
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Here CFLnominal is the target global Courant-Friedrichs-Lewy
(CFL) number (specified by the user) while CFLactual is
the actual CFL number at time t. In practice the ratio
CFLnominal/CFLactual is almost always unity, so that τ perfectly
matches definition (61). The only exceptions are the startups of
highly transient computations, in which time steps are initially
forced to be very small and are progressively increased to nom-
inal values by means of a compound (exponential growth) scal-
ing. Under these conditions, the parameter τ defined in (61),
because of the scaling with ∆t, would be extremely small, nega-
tively affecting the spatial stability of the overall algorithm. Af-
ter the initial transient has elapsed (typically involving between
30 and 50 time steps), the ratio CFLnominal/CFLactual becomes
and stays equal to unity. The value cτ = 2 (for which τ = ∆t)
was used in the numerical experiments presented in Section 7.
The value cτ = 2 (for which τ = ∆t) appeared to give the best
results in a series of numerical experiments, although values in
the range [1/2, 3] proved also effective. The analysis of stabil-
ity and accuracy presented in Section 6 shows that three iter-
ations of the predictor/multi-corrector method, in combination
with cτ = 2 and a safety parameter CFL = 0.8 yield very good
performance (see also Section 6). This is because the method
is characterized by high wave number dissipation, accurate low
wave number behavior, and very low dispersion error over the
entire wave number spectrum. These theoretical findings were
confirmed in computations, not reported here, for the sake of
brevity.

Figure 2: Sketch of the length-scale hart as a function of the direction of nsh.
The plots show the envelope of hart as the angle that nsh forms with the x1-axis
varies from 0 to 360 degrees. Note the smooth transition of the length-scale
near the corners of the elements.

4.4. Artificial viscosity and discontinuity capturing operator

The discontinuity capturing operator is given by:

σart =

{
ρ νart;v∇

s
x v , if ∇x · v < 0 ,

0nd×nd , otherwise . (148)

λart =

{
ρ ∂pε

∣∣∣
ρ
νart;p∇xp , if ∇x · v < 0 ,

0nd , otherwise .
(149)

The scaling and structure of λart are chosen with the purpose
of dissipating pressure oscillations in the energy equation. The
artificial viscosities are

νart;v = c1|∇x · v| h2
art , (150)

νart;p = c2

√
|∇xp|
ρ

h3/2
art , (151)

The values c1 = 1.4 and c2 = 1.0 were found to perform best in
the computations of Section 7. There is however some flexibil-
ity in the choice of the viscosity constant, as comparable results
were obtained also with different combinations of values. The
values c1 = 1.4 and c2 = 1.0 were chosen so that νart;v and νart;p
peak at about the same value in computations, while maintain-
ing a slightly different spatial variation (see, e. g., the numerical
examples in Section 7, where both artificial viscosities are plot-
ted).

Possibly the most striking peculiarity of the adopted disconti-
nuity operator is the introduction of the diffusive term λart in the
energy equation. This approach is in clear contrast with [56],
and was already explored in [53]. One would be tempted to
think about λart as an artificial heat flux, but this interpretation
would be incorrect. In fact, the term λart involves only pressure
gradients, and not temperature (i.e., internal energy) gradients.
Most importantly, the term λart is not active at contact disconti-
nuities, where the pressure is continuous and typically constant.
λart is only active where shocks are present, and because the
corresponding artificial viscosity does not scale with the speed
of sound, this term is expected to be negligible also in compres-
sion regions characterized by small pressure gradients.

Remark10. Artificial viscosities implemented in traditional
hydrocodes also include a linear scaling with the speed of
sound, to control acoustic oscillations past shock fronts [6]. For
the present method, instead, best computational results were
obtained using only a quadratic viscosity of von Neumann-
Richtmyer type [6, 65]. This indicates that the variational mul-
tiscale stabilization in (69)–(70) performed well in controlling
numerical instabilities of acoustic (e.g., hourglass) nature.

Remark11. The definition (148) is more effective in damping
artificial pure shear motion, with respect to the more common
definition [6]

σart = − (ρνart∇x · v) I . (152)

Artificially produced homogeneous shear motion can have dis-
ruptive consequences on shock hydrodynamics computations of
fluids, since it is not resisted by hourglass controls (of any type),
nor the discretized physical stress.

Remark12. The use of the symmetric part rather than the full
gradient of the velocity gradient in definition (148) ensures that
angular momentum and algorithmic objectivity are preserved in
computations. For more details, see [39].

The length-scale hart is defined in a similar fashion to [53],
and is designed to stably sample a mesh length along the nor-
mal to the shock front. This means that, for a given mesh, hart
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should not vary abruptly for small changes in the direction of
the shock normal. An effective definition was found to be

hart =
2√

nT
sh

(
F2FT

2

)−1
nsh

, (153)

F2 =
∂x
∂ξ

, (154)

where nsh is a unit vector in the direction normal to the shock
front, and F2 the gradient of the mapping from the element’s
parent domain to its current configuration. In practice,

(
F2FT

2

)
measures the stretch in the direction given by nsh. A plot of the
envelope of hart as the shock normal angle spans the interval
[0, 360]-degrees is presented in Figure 2, for various quadrilat-
eral elements. This definition is analogous to the one adopted
in [32]. A reliable approximation to nsh was found to be:

nsh =

0.75 v̇
||v̇|| + 0.25 ∇xρ

||∇xρ||∣∣∣∣∣∣∣∣∣∣0.75 v̇
||v̇|| + 0.25 ∇xρ

||∇xρ||

∣∣∣∣∣∣∣∣∣∣ . (155)

Basically, the direction of the shock normal is a weighted aver-
age of the direction of the acceleration vector v̇, and the density
gradient (see also [63, 64]). Again, there is some flexibility in
the definition of the shock direction, and alternative choices are
possible.

5. Invariance and conservation properties

5.1. Galilean invariance and frame objectivity

A Galilean transformation of reference frames is a transla-
tion by a constant velocity VG. Particularly, the transformed
velocity is given by ṽ = v − VG, where v is the velocity prior to
the frame change. Accordingly, the spatial and temporal coor-
dinates transform as[

t̃
x̃

]
=

[
1 01×nd

−VG Ind×nd

] [
t
x

]
. (156)

Observing that d x̃ = dx, and that a Lagrangian time derivative
tracks a material particle irrespective of reference frames (i.e.,
X̃ = X), it is also straightforward to obtain

∂

∂t

∣∣∣∣∣
X

=
∂

∂t̃

∣∣∣∣∣
X̃
, (157)

∇x = ∇̃x . (158)

It is then easy to verify that the proposed stabilization approach
satisfies Galilean invariance properties, in both its abstract form
(93)–(94) or the specific predictor/multi-corrector implementa-
tion detailed in Section 4. In fact, the velocity appears always
in differentiated (or incremental) form with respect to space or
time in all the terms in the formulation, including the variational
multiscale and discontinuity capturing operators. Hence, after
a Galilean transformation is applied, the structure of the dis-
crete stabilized equations stays the same. Galilean invariance
properties were recognized as important in [50–52, 54] in the

specific case of Lagrangian and arbitrary Lagrangian-Eulerian
(ALE) computations.

It is also not very difficult to prove (see, e.g., [39]), that in the
limit case of infinite iterations of the predictor/multi-corrector
scheme (i.e., the mid-point time integrator), objectivity prop-
erties are also satisfied [59]. In the case of a finite number of
iterations, it is shown in [39] that the error in objectivity is usu-
ally converging very fast, becoming negligible with respect to
the numerical error in the computations. This is also in view of
the specific form (148) of the artificial viscosity operator.

5.2. Global conservation for the mid-point integrator

A point of departure in the discussion is the analysis of
global conservation properties for the mid-point integrator from
which the predictor/multi-corrector algorithm is derived. In
particular, mass and momentum conservation statements for
the predictor/multi-corrector method are virtually identical to
the ones developed for the mid-point implicit integrator, while
small adjustments are needed in the proof of total energy con-
servation.

5.2.1. Conservation of mass
Equation (128) (or, correspondingly, (127)) is a statement of

global conservation of mass. This can be easily seen by testing
(127) against a constant unit test function, which yields∫

Ω0

ρ0 dΩ0 =

∫
Ω

ρ dΩ = total mass . (159)

In the context of the discrete equations (with lumping applied to
the second integral above), we can easily see that (159) is equiv-
alent to contracting (128) with the vector 1, a nnp-dimensional
vector whose entries are all unity, namely

1T [Vn+1]ρn+1 = 1T {M0} = discrete total mass . (160)

5.2.2. Conservation of linear and angular momentum
Let us assume, as is customary when proving conservation

statements, that only homogenous Neumann (zero-traction)
boundary conditions are imposed, so that the test and trial func-
tion spaces for the velocities coincide (i.e., Sh

κ = Vh
κ ). Testing

(116) against the shape function ψh = ei, i = 1, . . . , nd (the
constant unit vector of the Cartesian basis in the ith direction)
yields a conservation statement for the global momentum in the
direction ei. Namely, as the boundary term and the integral in-
volving the test function gradient simplify, (116) yields

0 =

∫
Ω0

ρ0
(
vi,n+1 − vi,n

)
dΩ0

=

∫
Ωn+1

ρn+1vi,n+1 dΩ −

∫
Ωn

ρnvi,n dΩ , (161)

where vi = v · ei. This is analogous to contracting the entries
of vector equation (117) corresponding to the ith component
against the vector 1:

1T [Mi,v]
(
vi,n+1 − vi,n

)
= 0 , (162)
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where [Mi,v] is the diagonal block of [Mv] corresponding to the
degrees-of-freedom vi associated with the ith direction. Under
appropriate boundary conditions, an algorithmic form of the to-
tal angular momentum is also conserved (see [39] for a detailed
discussion).

5.2.3. Conservation of total energy

We assume again homogenous Neumann boundary condi-
tions, for which it is possible to test (117) with ψh = vn+1/2.
With this choice as a test function, the kinetic energy balance
for the system is obtained:

1
2

∫
Ωn+1

ρn+1(v · v)n+1 dΩ −
1
2

∫
Ωn

ρn(v · v)n dΩ

= − ∆t
∫

Ωn+1/2

(∇xv)n+1/2 : σ̃n+1/2 dΩ , (163)

or, applying mass lumping and using vector notation,

1
2

vT
n+1[Mv]vn+1 −

1
2

vT
n [Mv]vn = −∆t vT

n+1/2Fn+1/2 . (164)

The previous equations are derived using the following identity∫
Ω0

ρ0vn+1/2 · (vn+1 − vn) dΩ0

=

∫
Ω0

ρ0

2
((v · v)n+1 − (v · v)n) dΩ0

=

∫
Ωn+1

ρn+1

2
(v · v)n+1 dΩ −

∫
Ωn

ρn

2
(v · v)n dΩ , (165)

or, equivalently (recall [Mv] is diagonal, therefore symmetric),

1
2

vT
n+1/2[Mv] (vn+1 − vn) =

1
2

(
vT

n+1 + vT
n

)
[Mv] (vn+1 − vn)

=
1
2

vT
n+1[Mv]vn+1 −

1
2

vT
n [Mv]vn .

(166)

Testing (123) with a shape function equal to unity over the en-
tire domain (i.e., ψh

γ |Ω0= 1) yields

∫
Ωn+1

(ρε)n+1 dΩ −

∫
Ωn

(ρε)n dΩ

=

∫
Ω0

ρ0 (εn+1 − εn) dΩ0

=∆t
∫

Ωn+1/2

(∇xv)n+1/2 : σ̃n+1/2 dΩ . (167)

or, equivalently,

1T [Mε] (εn+1 − εn) = −∆t 1T Wn+1/2 . (168)

In particular, recalling
∑nnp

A=1 NA = 1,

1T Wn+1/2 = − 1T
{
−

∫
Ωn+1/2

NA (∇xv)n+1/2 : σ̃n+1/2 dΩ

}
+ 1T

{∫
Ωn+1/2

(∇x NA) · q̃n+1/2 dΩ

}
= −

∫
Ωn+1/2

 nnp∑
A=1

NA

 (∇xv)n+1/2 : σ̃n+1/2 dΩ

+

∫
Ωn+1/2

∇x

 nnp∑
A=1

NA

 · q̃n+1/2 dΩ

= −

∫
Ωn+1/2

(∇xv)n+1/2 : σ̃n+1/2 dΩ

+

∫
Ωn+1/2

∇x (1) · q̃n+1/2 dΩ

= −

∫
Ωn+1/2

(∇xv)n+1/2 : σ̃n+1/2 dΩ . (169)

Comparing (121)–(122) with (125)–(126), and taking into ac-
count (169),

vT
n+1/2Fn+1/2 = −1T Wn+1/2 . (170)

Summing (164) and (168), we derive a statement of conserva-
tion for an algorithmic total energy:

1
2

vT
n+1[Mv]vn+1 + 1T [Mε]εn+1 =

1
2

vT
n [Mv]vn + 1T [Mε]εn .

(171)

Remark13. The approach followed in the proof of global con-
servation properties, is very similar to the one presented in [56],
with the exception of the treatment of the term containing q̃.

5.3. Conservation for the predictor/multi-corrector approach

The proposed predictor/multi-corrector approach maintains
all the conservation properties of the base mid-point algorithm.
The proofs are straightforward for mass and linear momentum
conservation, but require special care in the case of total en-
ergy. In fact, the work vector W(i,i+1)

n+1/2 (see Table 1) is computed
holding the geometry and all the terms in the integral (140) at
iterate (i), while the velocity vn+1/2 is evaluated using iterate
(i+1). This new iterate is readily available after the momen-
tum equation is integrated in time (the predictor/multi-corrector
mimics a Gauss-Seidel solution strategy). Using arguments vir-
tually identical to the ones presented in Section 5.2, it is easy to
realize that the identity

(v(i+1)
n+1/2)T Fi

n+1/2 = −1T W(i,i+1)
n+1/2 (172)

guarantees that total energy is conserved at each iterate of the
predictor/multi-corrector algorithm, namely,

1
2

(v(i+1)
n+1 )T [Mv]v(i+1)

n+1 + 1T [Mε]ε
(i+1)
n+1 =

1
2

vT
n [Mv]vn + 1T [Mε]εn .

(173)
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(a) Three-dimensional Noh test (303-element mesh).
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(b) Three-dimensional Sedov test (443 element mesh).

Figure 3: Energy history for a three-dimensional Noh test (3(a)), and a three-dimensional Sedov test (3(b)). The plots on the upper row show the change in the
internal (blue line) and kinetic (red line) energies, normalized with the total energy. The plots on the lower row show the total energy (Etot) relative increment
between time tn, and tn+1, namely (Etot

n+1 − E
tot
n )/Etot

n . Note the scale of the vertical axis is 10−13 in the lower plots.

The time histories of the kinetic, internal and total energies pre-
sented in Figure 3 confirm, within machine precision, the con-
servation properties of the proposed algorithm in the case of a
three-dimensional Noh test (Fig. 3(a)), and a three-dimensional
Sedov test (Fig. 3(b)). The reader can refer to Section 7 for
more details on the setup of these tests.

Remark14. It is important to realize that the proposed varia-
tional multi-scale approach is not limited in scope to the pecu-
liar time integrator described here. In particular, it would be
possible to implement a similar approach using Runge-Kutta
integrators. In order to preserve global conservation of total
energy (proofs of mass and momentum conservation do not
usually require much effort), it is fundamental to verify that an
identity analogous to (172) takes place, and to ensure that the
overall algorithmic definitions of kinetic and total energy retain
physical significance.

6. Algorithmic spectral analysis

This section is fundamental for the design of the overall al-
gorithm, since it correlates the choice of the stabilization pa-
rameter cτ with the fundamental algorithmic properties in terms
of stability, accuracy, dispersion and dissipation. The analysis
is restricted to the one-dimensional periodic case, for the lin-
earized system of equations. Diffusive effects due to the artifi-
cial viscosity operators are also accounted for, leading to stable
time-step estimates that work in the nonlinear case with shocks.

The reader not interested in the details of derivations can skip
this section in a first reading, and retain the main results sum-
marized below:

1. The method is stable for all iterates of the predictor/multi-
corrector, with (200) as Courant-Friedrichs-Lewy stability
condition.

2. Very good dispersion and high-wavenumber dissipa-
tion properties are obtained with three iterations of the
predictor/multi-corrector, when cτ = 2 and the Courant-
Friedrichs-Lewy factor is 0.8.

3. The results of the linearized analysis are also confirmed
in a large number of nonlinear numerical computations, in
part included in the present article.

These conclusions are obtained by performing the von Neu-
mann analysis of dissipation and dispersion properties for the
stabilized algorithm obtained from the discretization of (67)–
(68). More precisely, equations (67)–(68) are augmented by
diffusive operators derived from the linearization of the discon-
tinuity capturing operators (148)–(149), and integrated in time
using the predictor/multi-corrector algorithm described in Sec-
tion 4.2. The interested reader can find the detailed derivations
in Appendix A.

6.1. Stability
Consider a one-dimensional, periodic domain, and the pro-

posed stabilized method on a uniform grid. Appendix A shows
that, applying the Discrete Fourier Transform (DFT) to the
degrees-of-freedom of the discrete solution, the evolution of the
kth velocity/pressure Fourier modal pair relative to the nth time
step and the ith iterate, namely

Ẑ(i)
k,n =

 V̂ (i)
k,n

P̂(i)
k,n

 , (174)
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(a) cτ = 0, implicit. (b) cτ = 1, implicit. (c) cτ = 2, implicit.

(d) cτ = 0, 1st iterate. (e) cτ = 1, 1st iterate. (f) cτ = 2, 1st iterate.

(g) cτ = 0, 2nd iterate. (h) cτ = 1, 2nd iterate. (i) cτ = 2, 2nd iterate.

(j) cτ = 0, 3rd iterate. (k) cτ = 1, 3rd iterate. (l) cτ = 2, 3rd iterate.

(m) cτ = 0, 4th iterate. (n) cτ = 1, 4th iterate. (o) cτ = 2, 4th iterate.

Figure 4: Elevation plots of the spectral radii ρG(i) (σ, βk), for κ = 0, cτ = 0, 1, 2, and various iterates of the predictor/multi-corrector algorithm. In the top row, the
implicit mid-point time integrator detailed in (176). In the subsequent rows, the iterates from one to four. For the case cτ = 0, cτ = 1, and cτ = 2, the plots are in the
range σ ∈ [0, 2], σ ∈ [0, 1], and σ ∈ [0,

√
2/2], respectively. Also, note that Figures 4(a), 4(d), 4(g), 4(j), 4(m) have a vertical range [0, 1.2], while all other Figures

are in the range [0, 1].
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(a) cτ = 1, 1st it. (b) cτ = 1, 2nd it. (c) cτ = 1, 3rd it. (d) cτ = 1, 4th it.

(e) cτ = 2, 1st it. (f) cτ = 2, 2nd it. (g) cτ = 2, 3rd it. (h) cτ = 2, 4th it.

Figure 5: Contour plots of the spectral radii of various iterates of the predictor/multi-corrector algorithm for κ = 0. Figures 5(a)–5(d): cτ = 1. Figures 5(e)–5(h):
cτ = 2. The red continuous line is the contour line relative to a unit spectral radius, the white dashed line in Figures 5(e)–5(h) indicates the value σ =

√
2/2.
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(f) cτ = 2, σ = 0.57.
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(g) cτ = 2, σ = 0.6.

0 Π
4

Π
2

3 Π
4 Π

Βk

0.5

1.
ΡG!i"

(h) cτ = 2, σ = 0.7.

Figure 6: Spectral radii for the stabilized predictor/multi-corrector algorithm in the case κ = 0, for various values of the acoustic Courant number σ and stabilization
parameter. Black: Implicit time integrator. Orange, red, green and blue are used for the first, second, third, and fourth iterates, respectively.

19



0.0 0.2 0.4 0.6 0.8 1.0
0

Π
4

Π
2

3 Π
4

Π

0

Π
4

Π
2

3 Π
4

Π

Σ

Β k

Figure 8: Contours of unit spectral radii (stability limit) for the case cτ = 2. The
color scheme is as follows: First iterate in black, second iterate in blue, third
iterate in green, fourth iterate in red. Part of the curve relative to the second
iterate is not visible, as it overlaps with the one relative to the fourth iterate.

can be characterized in terms of an amplification matrix G(i). In
general, G(i) is a function of the acoustic Courant number σ =
cs∆t

h , the dissipative Courant number κ = ν∆t
h2 and βk = 2πk

N (i.e.,
the angularly normalized wave number k, such that 0 ≤ βk ≤ π).
Specifically, we have the relation (see again Appendix A)

Ẑ(i)
k,n+1 = G(i) Ẑk,n , (175)

where Ẑk,n represents the velocity/pressure modal pair at the
previous time-step. In the limit for an infinite number of iter-
ations, we obtain the amplification matrix for the original im-
plicit mid-point algorithm from which the predictor/corrector
time integrator is derived (see, for details, Appendix A):

Ẑk,n+1 = G(∞) Ẑk,n . (176)

Stability properties are evaluated by analyzing how G(i) evolves
in time an initial condition. Recalling that in a finite-
dimensional space all norms are equivalent, the stability of the
numerical discretization is ensured if it is possible to find a vec-
tor norm || · || for which

|||G(i)
||| = max

s∈R2\0

||G(i)s||
||s||

≤ 1 . (177)

This is equivalent to say that the matrix G(i) will not amplify an
initial condition vector. The spectral radius of G(i) is

ρ(G(i)) = max{|λ(G(i))|} ≤ |||G(i)
||| , (178)

where λ(G(i)) is a (generally complex) eigenvalue of G(i). The
spectral radius can be used to derive conditions for stability
more manageable than (177). To this purpose, we recall a fun-
damental theorem of linear algebra:

Theorem 1 (cf. [24], p. 297). Let A ∈ Cm×m, where C is the
complex field. Given ε > 0, there exist a matrix norm ||| · ||| such
that ρ(A) ≤ |||A||| ≤ ρ(A) + ε.

This immediately implies:

ρ(G(i)) < 1 ⇒ |||G(i)
||| < 1 ⇒ stability , (179)

ρ(G(i)) > 1 ⇒ |||G(i)
||| > 1 ⇒ instability . (180)

Conditions (179) and (180) can also be interpreted in light of
the following theorem:

Theorem 2 (cf. [24], p. 298). Let A ∈ Cm×m, where C is the
complex field. Then: limn→∞ An = 0 if and only if ρ(A) < 1.

Hence, if ρ(G(i)) < 1, Theorem 2 implies that the solution de-
cays to zero after an infinite number of time steps, while if
ρ(G(i)) > 1, one can consider, as initial condition vector Ẑ0,
the eigenvector relative to an eigenvalue λ0 with |λ0| > 1.
Using the properties of vector norms, it is easy to see that
limn→∞ ||Ẑn|| = limn→∞ ||(G(i))n Ẑ0|| = limn→∞ |λ0|

n||Ẑ0|| = ∞,
and we have unbounded growth.

The more delicate situation is when ρ(G(i)) = 1, which, in
the general case, makes the von Neumann analysis of stability
impractical. Particularly, the von Neumann stability analysis
cannot be applied to general non-normal matrices [37, 61]. An
example is the mid-point implicit time integrator for cτ = 0
(see Fig. 4(a)). Then ρ(G(i)) = 1, for every σ and βk, and the
stability analysis should be approached with energy methods.

However, when cτ > 0, the matrices ρ(G(i)) generated by the
proposed method are treatable, due to their specific structure.
In fact, when cτ > 0, ρ(G(i)) = 1 occurs only in three specific
situations (see, e.g., Figure 4):

1. σ = 0 ⇔ ∆t = 0, a trivial case corresponding of no time
evolution. In this case, the amplification matrix G(i) must
be the identity, and |||G(i)

||| = 1.
2. βk = 0, corresponding to the evolution in time of a con-

stant mode. In this case, it is trivial to prove that for nu-
merical consistency reasons, G(i) must be the identity, with
|||G(i)

||| = 1.
3. The time-step stability limit, which corresponds to the

frontier between the regions in which ρ(G(i)) < 1 and
ρ(G(i)) > 1 (a curve in a two-dimensional space, as
depicted in Figures 5 and 8, and a surface in a three-
dimensional space, as depicted in Figure 11). Since it is
not advisable to run nonlinear computations too close to
the boundary of the stability region, this case does not re-
quire additional analysis.

6.2. Behavior of the highest modes
Stability of the highest modes in a computation is a neces-

sary but not sufficient condition for overall stability. However,
an understanding of the dynamics of high wave number modes
can shed light on the overall behavior of the algorithm, and,
most importantly, provide time-step control estimates of prac-
tical use in computations. Detailed derivations are presented
in Appendix B. Suffices to say that the following estimate of
the stable time-step size for the highest wave numbers can be
derived:

∆t ≤
h2

ν +
√
ν2 + cτc2

sh2
. (181)
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(a) cτ = 0, implicit. (b) cτ = 1, implicit. (c) cτ = 2, implicit.

(d) cτ = 0, 1st iterate. (e) cτ = 1, 1st iterate. (f) cτ = 2, 1st iterate.

(g) cτ = 0, 2nd iterate. (h) cτ = 1, 2nd iterate. (i) cτ = 2, 2nd iterate.

(j) cτ = 0, 3rd iterate. (k) cτ = 1, 3rd iterate. (l) cτ = 2, 3rd iterate.

(m) cτ = 0, 4th iterate. (n) cτ = 1, 4th iterate. (o) cτ = 2, 4th iterate.

Figure 7: Elevation plots of the ratio ω̄/ω, for κ = 0. Plots are for cτ = 0, 1, 2, and various iterates of the predictor/multi-corrector algorithm. In the top row, the
implicit mid-point time integrator (see (176)). In the subsequent rows, the iterates from one to four. Note that for the case cτ = 0, cτ = 1, and cτ = 2, the plots are
in the range σ ∈ [0, 2], σ ∈ [0, 1], and σ ∈ [0,

√
2/2], respectively.
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(a) cτ = 1, 1st it. (b) cτ = 1, 2nd it. (c) cτ = 1, 3rd it. (d) cτ = 1, 4th it.

(e) cτ = 2, 1st it. (f) cτ = 2, 2nd it. (g) cτ = 2, 3rd it. (h) cτ = 2, 4th it.

Figure 9: Contour plots of the ratio ω̄/ω, for κ = 0. Plots are for cτ = 1, 2, and various iterates of the predictor/multi-corrector algorithm. Figures 9(a)–9(d): cτ = 1.
Figures 9(e)–9(h): cτ = 2 . The red continuous line is the locus of a unit spectral radius. The black continuous line indicates the locus ω̄/ω = 1 (no phase error).
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(f) cτ = 2, σ = 0.57.

0 Π
4

Π
2

3 Π
4 Π

Βk

0.5

1.

1.5

Ω!Ω

(g) cτ = 2, σ = 0.6.
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(h) cτ = 2, σ = 0.7.

Figure 10: Plot of the ratio ω̄/ω, for κ = 0, for various values of the acoustic Courant number σ. Figures 10(a)–10(d): cτ = 1. Figures 10(e)–10(h): cτ = 2. Color
scheme is as follows. Black: Implicit time integrator. Orange, red, green and blue are used for the first, second, third, and fourth iterate, respectively.
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(a) cτ = 0, 1st iterate. (b) cτ = 1, 1st iterate. (c) cτ = 2, 1st iterate.

(d) cτ = 0, 2nd iterate. (e) cτ = 1, 2nd iterate. (f) cτ = 2, 2nd iterate.

(g) cτ = 0, 3rd iterate. (h) cτ = 1, 3rd iterate. (i) cτ = 2, 3rd iterate.

Figure 11: Three-dimensional surfaces representing the loci of the spectral radii equal to unity for the first, second, and third iterate of the proposed time integrator,
in the case of no stabilization, cτ = 0, and for values of the stabilization parameter equal to cτ = 1 and cτ = 2, respectively. The blue surface represents the stability
limit given by (244) (or, equivalently, (181)), the green surface represents the “mitigated” stability condition given in (199). Note that there are no additional
intersections between the red and blue surface in Figure 11(b), other than the one that occurs for βk = π. The very rapid change in slope near [σ, βk] = [1, π/2]
seems to create a graphical artifact, which was not possible to resolve increasing the plotting mesh resolution.
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Remark15. In the limit of a vanishing artificial viscosity, a
modified advective Courant-Friedrichs-Lewy condition is ob-
tained, namely

∆t ≤
h
√

cτ cs
, or, σ ≤

1
√

cτ
. (182)

This implies that the variational multiscale stabilization is re-
ducing the stability limit for cτ > 1 and increasing the stability
limit if cτ < 1 (at least for the highest wave numbers). For
cτ = 1, the standard acoustic Courant-Friedrichs-Lewy stability
condition is recovered.

Remark16. In the limit of a vanishing speed of sound, the sta-
bility limit is uniquely dependent on the artificial viscosity ν and
takes the classical form of the dissipative Courant-Friedrichs-
Lewy condition:

∆t ≤
h2

2ν
, or, κ ≤

1
2
. (183)

6.3. Accuracy, dissipation, and dispersion

A complex eigenvalue of G(i) can be expressed as:

λ(G(i)) = |λ(G(i))|eiω̄∆t , (184)

where ω̄∆t = arg(λ(G(i))), and ω̄ ∈ R is the phase. This decom-
position is important for the study of the dispersion properties
of the proposed time integration approach, as shown in Section
6.4. An alternative expression for (184) is

λ(G(i)) = e(−ξ̄+iω̄)∆t , (185)

where

|λ(G(i))| = e−ξ̄∆t , or, ξ̄ = −
log(|λ(G(i))|)

∆t
. (186)

By performing a Taylor expansion of ξ̄ and ω̄ in the limit of
vanishing time step ∆t and mesh size h, it is possible to recover
the truncation error and the formal order of accuracy of the var-
ious iterates of the method, as shown in Section 6.4.3. Due to
the complexity of the algebra involved, we are not including the
calculations and explicit expressions of the eigenvalues of the
G(i) matrices. We present the fundamental results by appropri-
ate plots in Section 6.4 and Section 6.5. All algebraic symbolic
manipulations were performed using the Mathematica R© TM

software [1, 67].

6.4. The case of vanishing viscosity

In shock hydrodynamics computations, the artificial viscos-
ity is usually present only in shock layers, and is absent in ex-
pansion regions. Therefore, it is very important to study the
proposed time integrator in the limit of a vanishing viscosity, as
most part of the flow domain is subject to this condition.
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(a) cτ = 1, all iterates.
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(b) cτ = 2, all iterates.

Figure 12: Contour plots of the loci of the spectral radii equal to unity for the
case κ = 1/4, with cτ = 1 (Fig. 12(a)) and cτ = 2 (Fig. 12(b)). The color
scheme is as follows. First iterate in black, second iterate in blue, third iterate
in green, fourth iterate in red. The curves relative to the second iterate are not
visible as they overlap with the ones relative to the fourth iterate.

6.4.1. Amplification factor

Figure 4 shows the spectral radii of the matrices G(i) for
i → ∞ (implicit scheme) and i = 1, 2, 3, 4, with stabilization
parameter cτ = 0, 1, 2. First, note that the implicit algorithm
detailed in (176) is neutrally stable in the case of no stabi-
lization, fact that can be derived using classical energy argu-
ments (note that the spectral radius of the amplification ma-
trix is equal to unity over the entire plane [σ, β] (Fig. 4(a))).
Without stabilization, only the even iterates are stable in the
predictor/multi-corrector version, as detailed in Figures 4(g)
and 4(m). As shown in Figures 4(d) and 4(j) (note in partic-
ular that these vertical range of the plot is [0, 1.2]), when sta-
bilization is absent, the first and third iterates of the proposed
algorithm are unconditionally unstable. This somewhat surpris-
ing phenomenon can be explained by realizing that the spectral
radii for the predictor/multi-corrrector scheme exhibit a non-
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Figure 13: Plots of density, pressure, internal energy, and velocity versus the spatial position for the propagation of an acoustic pulse at time t = 0.5, and various
CFL numbers. Two iterations of the conservative predictor/multi-corrector approach. The red lines indicate the initial condition.

monotonic convergence to unity as (i)→ ∞.

The implicit case in Fig. 4(b) is stable, and the stability range
for the predictor/multi-corrector is σ ∈ [0, 1] for cτ = 1 (Fig.
4(e), 4(h), 4(k), and 4(n)), as predicted in Section 6.1. As seen
in Figure 8 for the case cτ = 2, the stability region of some
of the iterates does not completely extend to σ = 1/

√
2 (i.e.,

the stability limit for the highest wave numbers, derived in Sec-
tion 6.1). This feature is the result of the increased value of the
stabilization constant, which causes some of the lower modes
to go unstable before the highest. Observe that, in this case,
the range of stability is a function of the number of iterations
of the predictor/multi-corrector. In fact, the first and third it-
erates (Figs. 5(e) and 5(g)) are stable over the entire range
σ ∈ [0, 1/

√
2]. Referring to Figure 8, it is easy to realize a

safety factor 0.9 is sufficient in recovering a stability range for
all iterates, namely σ ∈ [0, 0.9/

√
2]. Additional information

can be gained by plotting sections of the spectral radius ele-
vation plots of the various amplification matrices for different
values of the acoustic Courant number σ, as shown in Figure 6.
Figures 6(a)–6(d) show the results for cτ = 1, Figures 6(e)–6(h)
show results for cτ = 2.

Observe that high wave number damping increases as the

value of cτ increases. The convergence of the spectral radii of
the iterates (color lines) to the spectral radii of the correspond-
ing implicit schemes (black lines) is easily appreciated. In Fig-
ure 6(g), the onset of a bifurcation point for the amplification
matrix of the second iterate is visible (the kink in the red curve
near βk = 7π/8). This phenomenon is more clearly visible in
Figure 6(h), a section of the spectral radii past the stability limit
0.9/
√

2 ≈ 0.64, for the second and fourth iterates (the red and
blue curves in proximity of βk = 5π/8). Past a bifurcation point,
the eigenvalues of the corresponding amplification matrix cease
to be complex conjugate, as evident in Figures 10(g) and 10(h),
by the absence of a phase in the eigenvalues. This is not a desir-
able property in discretized wave propagation problems which
should behave as systems of harmonic oscillators. The best nu-
merical results in terms of accuracy and robustness (low mesh
distortion) were obtained with three iterates of the algorithm,
cτ = 2 and a safety factor 0.8 (i.e., σ = 0.8/

√
2 ≈ 0.57). This

choices correspond to the green curve in Figure 6(f): The high
wave number damping, the moderate low wave number error,
and the absence of an eigenvalue bifurcation explain these find-
ings.
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Figure 14: Plots of density, pressure, internal energy, and velocity versus the spatial position for the propagation of an acoustic pulse at time t = 0.5, and various
CFL numbers. Three iterations of the conservative predictor/multi-corrector approach. The red lines indicate the initial condition.

6.4.2. Dispersion error
When no viscosity is present, it is very insighful to evalu-

ate the extent of the dispersion error in computations. For this
purpose, observe that the classical dispersion relationship for a
linear wave is given by ω = 2πkcs/|T|. Recalling that |T| = hN
is the measure of the periodic one-dimensional domain, it is
easily derived

ω∆t = σβk . (187)

A typical measure of the dispersion error is given by the ratio

ω̄

ω
=

arg(λ(σ, βk))
σβk

. (188)

When ω̄/ω = 1, no dispersion error is present for a certain
wave number βk at a certain value of σ. Figure 7 shows ele-
vation plots of the ratio ω̄/ω. It is noticeable in Figures 7(g)
and 7(m) that eigenvalue bifurcation takes place for values of
[σ, βk] ≈ [2, π/2], when no stabilization is applied. Although
less notably, this also occurs for the case cτ = 2 (Figs. 7(i), and
7(o)), for [σ, βk] near [1, π/2], as already mentioned in Sec-
tion 6.4.1. Contour plots of the dispersion ratio are presented
in Figure 9. The black thick lines indicate the loci where the

dispersion ratio equals unity. The red thick lines indicate the
locus of the amplification factor equal to unity (i.e., the stabil-
ity limit). Note that the predictor/multi-corrector iterates show
degradation of the phase error in proximity of the stability lim-
its, with respect to the corresponding implicit algorithms (see
also Fig. 7). The noticeable “distortion” in the contour lines
near the stability boundary indicates a significant growth in the
phase errors. However, the third iterate for the stabilized case
for cτ = 1 and cτ = 2 shows fairly moderate phase error for
σ ∈ [0.8, 0.9] and σ = 0.57, respectively, as seen in Figure 10.

Remark17. Computations using cτ = 2 were most often per-
formed at σ = 0.8/

√
cτ ≈ 0.57 with three iterates of the

predictor/multi-corrector. This choice corresponds to high
wave number damping and small overall phase error (see also
Fig. 6(f)), and was found to reduce mesh distortion in blast tests
of Sedov type [58].

Remark18. The fact that the variational multiscale stabiliza-
tion with cτ = 2 reduces by a factor 1/

√
2 the stability limit

should not be considered as an indication that the variational
multiscale shock hydrodynamics method would require 30%
more time steps than a standard hydrocode computation. In

26



1

1.01

1.02

! 
CFL=0.90

1

1.01

1.02

p 

1.49

1.5

1.51

e 
 

0 0.25 0.5 0.75 1

0

0.01

0.02

v 

x 

CFL=1.00

0 0.25 0.5 0.75 1
x 

CFL=1.05

0 0.25 0.5 0.75 1
x 

Figure 15: Plots of density, pressure, internal energy, and velocity versus the spatial position for the propagation of an acoustic pulse at time t = 0.5, and various
CFL numbers. Four iterations of the conservative predictor/multi-corrector approach. The red lines indicate the initial condition.

fact, the opposite can be said: A comparison on multidimen-
sional tests showed that the variational multiscale method re-
quired on average 20-30% fewer time steps than the more stan-
dard constant pressure finite element implementation in [56].
This is due to the fact that the proposed approach provides con-
siderable reduction in mesh distortion with respect to a standard
hydrocode implementation, with very positive effects also on
the overall time advancement constraint.

Figures 7 and 9 show the noticeable the difference in behav-
ior between the odd and even iterates of the method. Restricting
our analysis to the stabilized case, we see that odd iterates over-
shoot the frequency ω for high values of βk and σ, while even
iterates undershoot the frequency in the same range of values
for βk and σ. This is most clearly appreciated in Figure 10.

6.4.3. Low wave number limit and truncation error

A Taylor series expansion of ξ̄ and ω̄ in powers of the time
step ∆t and mesh spacing h can be used to estimate the order of

accuracy of the method. When cτ = 1 we obtain

ξ̄(G(1)
cτ=1) =

c2
s k̃4

8
h2 ∆t −

c4
s k̃4

8
∆t3

+ O(h4∆t,∆t3h2) , (189)

ξ̄(G(2,3,4,...,∞)
cτ=1 ) =

c2
s k̃4

8
h2 ∆t + O(∆t h4,∆t3h2) , (190)

and

ω̄(G(1)
cτ=1) = ω −

csk̃3

6
h2 +

c3
s k̃3

6
∆t2

+ O(∆t4,∆t2h2, h4) , (191)

ω̄(G(2,3,4,...,∞)
cτ=1 ) = ω −

csk̃3

6
h2 −

c3
s k̃3

12
∆t2

+ O(∆t4,∆t2h2, h4) , (192)

where κ̃ = 2πk/|T|, so that ω = κ̃cs. We conclude that the
formal order of accuracy of all the iterates of the method is third
order with regard to dissipation and second order with regard to
dispersion, when ∆t and h are balanced by a CFL condition. In
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Figure 16: Plots of density, pressure, internal energy, and velocity versus the spatial position for the periodic breaking wave test at time t = 0.0004, and various
CFL numbers. Three iterations of the conservative predictor/multi-corrector approach. The red lines indicate the initial condition.

the case cτ = 2, we obtain

ξ̄(G(1)
cτ=2) =

c2
s k̃2

4
∆t + O(h2∆t,∆t3) , (193)

ξ̄(G(2)
cτ=2) =

c2
s k̃4

4
h2 ∆t −

5c2
s k̃4

16
∆t3

+ O(∆t h4,∆t3h2) , (194)

ξ̄(G(3,4,...,∞)
cτ=2 ) =

c2
s k̃4

4
h2 ∆t + O(∆t h4,∆t3h2) , (195)

as well as

ω̄(G(1)
cτ=2) = ω −

csk̃3

6
h2 +

61c3
s k̃3

96
∆t2

+ O(∆t4,∆t2h2, h4) , (196)

and

ω̄(G(2,3,4,...,∞)
cτ=2 ) = ω −

csk̃3

6
h2 −

c3
s k̃3

12
∆t2

+ O(∆t4,∆t2h2, h4) . (197)

Under the assumption that the time step ∆t and mesh spacing
h are balanced by a CFL condition, the previous derivations

imply that the dissipation error is first order for the first iterate
and third order for all other iterates, while the dispersion error
is second order for all iterates. Overall, the proposed stabilized
method is formally second-order accurate, for two or more it-
erations of the predictor/multi-corrector procedure. Also note,
for cτ = 2, the presence of an additional term in ∆t3 in equation
(194), relative to the second iterate, with respect to (195), rela-
tive to higher iterates. This indicates that at least three iterations
are required to exactly retain the properties of the implicit limit
algorithm in the low wave number regime.

6.5. The case of non-vanishing viscosity
Artificial viscosity operators are usually added in shock hy-

drodynamics computations to enhance robustness under severe
shock wave conditions. Viscosity operators usually are mod-
eled as Laplace diffusive operators, and may pose additional
constraints on stability, further limiting the time step. It is there-
fore important to present a thorough analysis and time-step con-
trol estimate, when dissipation is present. In this case, because
of the parabolic nature of the problem, the dispersion error anal-
ysis is less relevant and will be omitted.

Recalling that by definition and the developments in Section
6.1, 0 ≤ σ ≤ 1/

√
cτ, and 0 ≤ κ ≤ 1/2, a rearrangement of (244)
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Figure 17: Plots of density, pressure, internal energy, and velocity versus the spatial position for the periodic breaking wave test at time t = 0.0004, and various
CFL numbers. Four iterations of the conservative predictor/multi-corrector approach. The red lines indicate the initial condition.

yields the stability condition:

σ ≤

√
1 − 2κ

cτ
, (198)

from which, when κ = 1/4, we obtain σ ≤
√

2/2 and σ ≤ 1/2
for the cases cτ = 1 and cτ = 2, respectively. These results can
also be verified in Figure 12, for βk = π.

Perhaps the most important plots of the entire section are pre-
sented in Figure 11, in which red three-dimensional contour
surfaces show the loci of the spectral radii equal to unity for the
first, second, and third iterate of the proposed method, in the
space [σ, βk, κ]. Results are shown in the case of no stabiliza-
tion (cτ = 0) and for values of the stabilization parameter cτ = 1
and cτ = 2. A blue surface represents the stability limit given
by the high wave number analysis result (244) when equality
holds. In addition, in Figure 11(f), a green surface is used to
represent the condition,

1 =
0.9

κ +
√
κ + cτσ2

, (199)

which incorporates a safety factor CFL = 0.9 in the time-
step stability condition (181). First of all, note that the three-
dimensional stability region in Figures 11(a) and 11(g) is

bounded by the two red surfaces. The third iterate with no sta-
bilization is unconditionally unstable, since the intersection be-
tween planes [κ = const.] and red surfaces always occurs in
Figure 11(g). This is not the case for the first iterate, which is
conditionally stable in the range κ ∈ [1/4, 1/2]. However, this
result does not have practical relevance, since in the nonlinear
case one can expect κ to cover the entire range [0, 1/2].

Considering Figure 11(f) for the two-iterate scheme with
cτ = 2, it is easy to realize that the red and blue surfaces do
intersect at values βk < π, indicating that the stability condition
(181) is inappropriate. Mitigating the size of the time step by
a factor 0.9 (see (199)) is sufficient in preventing the predictor-
corrector from becoming unstable, as indicated by the fact that
(at least by visual inspection) the red and green surfaces in the
same picture do not intersect. When cτ = 1, the estimate given
by (181) (or, equivalently, (244)), yields a stable time step, at
least by inspection of Figures 11(b), 11(e), and 11(h).
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(a) Initial mesh.

(b) VMS-P0 [55, 56]. (c) VMS-C. (d) VMS-AC [52, 53].

Figure 18: Saltzmann test. Comparison of the mesh displacement results for the VMS-P0, VMS-C, VMS-AC methods. The meshes in Figures 18(b), 18(c), 18(d)
are rotated by 90 degrees counter-clockwise.
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Figure 19: Saltzmann test, comparison against the exact solution (in red). Left column: VMS-P0 method. Center column: VMS-C method. Right column: VMS-AC
method. From the top row down: Density, pressure, internal energy, horizontal velocity v1, vertical velocity v2, and artificial viscosities. The solution is plotted as
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The computations with the nonlinear algorithm were run with
the following time-step control:

∆t = CFL min
1≤e≤nel

 h2
e

νarte +

√
ν2

arte + cτc2
se

h2
e

 . (200)

where νarte = max{νart;v, νart;p}. The specific bound for the
safety factor CFL depends on the number of iterations: For
one and three iterations stability is achieved if CFL < 1.0, and
for two and four iterations stability is achieved if CFL < 0.9.

In the case when the artificial viscosity vanishes and cτ = 1.0,
one recovers the classical condition

∆t ≤ CFL min
1≤e≤nel

{
he

cse

}
. (201)

Conversely, in the case of a very low temperature fluid with
artificial viscosity active, one recovers the CFL condition for
the purely diffusive case, namely:

∆t ≤ CFL min
1≤e≤nel

{
h2

e

2νarte

}
. (202)

This situation is often encountered in hypervelocity impact or
piston problems (i.e., the Saltzmann test in Section 7.3), in
which the internal energy rises from a very low initial value as a
result of the conversion of boundary work into kinetic energy.

7. Numerical tests

Unless otherwise stated, all computations presented in this
article are run with three iterations of the predictor multi-
corrector time integrator, cτ = 2, and CFL = 0.8, which corre-
sponds to a very favorable condition in the linearized case, with
high wave number dissipation, high accuracy in the low wave
number range, and low dispersion error throughout the entire
wave number spectrum (see Section 6 for a detailed justifica-
tion of these claims).

The quality, accuracy and robustness of the proposed method
is evaluated by comparing it to two previously developed vari-
ational multiscale methods [53, 56], and other state of the art
computations [2, 42]. In particular the following notation is
used to denoting the various algorithms:

VMS-C indicates the variational multiscale conservative
method, that is the conservative, updated Lagrangian ap-
proach to shock hydrodynamics proposed in this study.

VMS-AC indicates the variational multiscale asymptotically
conservative method, proposed in [52, 53]. This method is
formulated in the pure Lagrangian framework and adopts
an iterative predictor-corrector approach which is conser-
vative only when convergence of the iterations is attained.

VMS-P0 indicates the variational multiscale Q1/P0 method,
proposed in [55, 56]. This method is conservative, but
maintains the typical structure of a standard hydrocode,
in that all thermodynamic variables are approximated as
piece-wise constant functions over the elements of the
computational mesh.

7.1. Propagation of an acoustic pulse

This one-dimensional test is performed to check the sharp-
ness and robustness of the time-step estimate provided by the
von Neumann analysis, when the artificial viscosity operator
is not active. This particular test tracks the propagation of an
acoustic pulse represented by the initial conditions

v0 = ω , (203)
ρ0 = 1 + ω , (204)
p0 = 1 + ω , (205)

ω(X) =

 1−cos
(

2π(X−Xo )
λ

)
100 , 0 ≤ X − Xo ≤ λ ,

0 , otherwise ,
(206)

where λ, the wavelength is taken equal to one fourth of the
length the domain Ω0, and Xo = −λ. The initial condition is de-
picted in Figures 13, 14, and 15, by red continuous lines. This
test was already presented in [53, 55, 56] in full detail. In prac-
tice, the initial condition is given by a base flow with a super-
posed perturbation with amplitude of about 2%. We can there-
fore expect the nonlinear equations of Lagrangian shock hydro-
dynamics to behave very similarly to their linearized limit. As
time progresses three waves are generated:

1. A large amplitude acoustic wave moving from left to right,
which can be seen on the right of the domain.

2. A smaller amplitude acoustic wave moving from right to
left, which at the final time of the computation is about to
reflect from the left boundary.

3. A standing (i.e., motionless) entropy wave, characterized
by a fluctuation in density and internal energy, visible on
the left of the domain.

The numerical results are presented in Figures 13, 14, and 15, in
the case of two, three, and four iterations of the predictor/multi-
corrector algorithm, and for values of the CFL number equal to
0.90, 1, and 1.05. It is easy to realize that in the case of two and
three iterations (Figs. 13 and 14, resp.) the time-step estimate is
very sharp. In fact, in the two-iteration case of Figure 13, solu-
tions are stable for CFL = 0.9 and unstable for CFL = 1.0. In
the three-iteration case of Figure 14, solutions are stable up to
CFL = 1.0, and become unstable for CFL = 1.05. The case of
four iterations (Fig. 15) is more interesting, since it shares the
same theoretical stability bound as the two iterate case, namely
CFL = 0.9, but oscillations appear only for CFL = 1.05. A
possible explanation is that the growth of instabilities at the sta-
bility limit is slower when four iterates are applied.

7.2. Periodic Breaking Wave

Another interesting numerical test for evaluating the tempo-
ral stability of the numerical scheme is represented by a peri-
odic, nonlinear breaking wave problem similar to the one de-
scribed in [17, 18]. The domain of the problem is the interval
[0, 1], subdivided into 100 elements, and with periodic bound-
ary conditions. The material is a γ-law ideal gas [47] with
γ = 5/3. The initial density has a sinusoidal variation

ρ(x, 0) = 0.001 (1.0 + 0.1 sin(2πx)) .
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Figure 20: Two-dimensional Noh test, mesh deformation. Comparison between the VMS-P0 method (upper left corner), the VMS-C method (upper right corner),
and the VMS-AC method (lower right corner).

The initial pressure is

p(x, 0) = 106
(
ρ(x, 0)
0.001

)γ
,

and the initial velocity is

v(x, 0) = 2
cs0 − cs

γ − 1
,

where

cs =

(
γ

p(x, 0)
ρ(x, 0)

)1/2

,

and

cs0 =

(
γ

106

0.001

)1/2

.

The solution is smooth for a finite time 0 < Tbreak < ∞, at
which point the wave breaks and a shock forms [17, 18]. The
numerical results are presented for t = 0.0004 > Tbreak. Be-
cause this problem involves the formation of shock waves, the
artificial viscosity operators are active, and the applicability of
the linearized analysis developed in previous sections is tested
more severely. As already hinted in Section 6, in the case of
nonlinear problems, the predictor/multi-corrector approach is
equivalent to a fixed-point nonlinear iteration. It was observed
in numerical computations that two iterations were not suffi-
cient to ensure robustness of the solution for this test. Only
results for three and four iterations are presented, in Figures 16
and 17, respectively. A reason for the need of at least three iter-
ations may be the interplay between the artificial viscosity and
the variational multiscale stabilization at the shock location.
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In particular, the artificial viscosity produces an “artificial”
residual near the shock, which in turn increases the strength of
the stabilization term. This nonlinear interaction may require
more than two iterations to be captured with sufficient accuracy.
In the case of three and four iterations (Fig. 16 and Fig. 17,
resp.), oscillations are only visible for CFL = 1.05. This proves
the effectiveness of the time-step estimate in the nonlinear case.
It is also noticeable that the overshoot past the shock is reduced
in the case of four iteration, with respect to the three iteration
case. In the case of four iterates, instabilities should occur past
CFL = 0.90, but they are not visible in the case CFL = 1.00,
as in the acoustic pulse test.

Remark19. In the case of the periodic breaking wave test, the
artificial viscosity is active and may provide a stabilizing ef-
fect by damping small oscillations in the compression region,
which eventually coalesces into a shock. This fact may par-
tially explain the results in the case of four iterates of the
predictor/multi-corrector. In any case, the important point to
be made is that the theoretical stability bound developed with
a linearized analysis provides a safe estimate for time-step ad-
vancement also in the nonlinear case.

7.3. Saltzmann test

The Saltzmann test evaluates the ability of a numerical
method to capture the features of a planar shock passing
through a distorted mesh (see the initial mesh geometry in Fig.
18(a)). A rectangular domain of gas (γ = 5/3, ρ0 = 1) is ini-
tially at rest, at zero temperature (i. e., for practical purposes,
ε0 = 10−14). At time t+0 , the left boundary is set in motion
with unit velocity, and generates a compression shock of infinite
strength (infinite Mach number), propagating from left to right
through the computational domain. All other boundary condi-
tions are of “roller” type (zero normal velocity/displacement).
Given a value of the ideal gas isentropic constant γ = 5/3, the
thermodynamic state past the shock is given by values of pres-
sure, internal energy, and density of 4/3, 1/2, 4, respectively.

Computations are performed at CFL = 0.8, and compared at
the final non-dimesional time T = 0.7. Figures (Figs. 18(b),
18(c), 18(d)) show the mesh displacement results, where it can
be observed that the mesh deformation pattern of VMS-C is
somewhat intermediate between VMS-AC and VMS-P0. Sim-
ilar conclusions are obtained by observing Figure 19, where
the three methods (blue dots) are compared against the exact
solution (red continuous line). The new conservative VMS-C
method does not produce any negative undershoots in pressure
and energy, clearly manifest for the VMS-AC method.

This is considered by the authors a considerable robustness
improvement, especially for applications to more realistic ma-
terials for which equations of state are given in tabular rather
than analytic form.

The VMS-AC method shows very good agreement with the
plateaus of the exact solution for density and internal energy,
while the VMS-P0 solution shows wide overshoots/undershoots
near the lateral boundaries (the horizontal boundaries in Fig.
18(a)) of the computational domain. The VMS-C method has

less pronounced overshoots near the horizontal boundaries, al-
though the overshoot in the internal energy plot past the shock
location is more pronounced than in both the VMS-P0 and
VMS-AC results.

Note that the VMS-P0 method utilizes a form of the artifi-
cial viscosity which also includes a term scaling with the speed
of sound, while the artificial viscosities for the VMS-C and
VMS-AC methods are purely based on the solution gradient.
This is the reason for the different behavior of the artificial vis-
cosity past the shock front, in the last row of plots in Figure
19.

It is important to analyze the typical numerical challenges in-
volved in the Saltzmann test. The numerical error in the shock
region is responsible for a spurious component of the velocity,
transverse to the shock front normal. At the horizontal bound-
aries, the roller boundary conditions force the transverse ve-
locity to be zero, and are responsible for an increase in the
kinetic energy error in the neighboring area. The numerical
error on the kinetic energy is compensated by the numerical er-
ror in the internal energy, as the total energy is globally con-
served (in a certain sense, “two wrongs make a right”), and
the lumped mass matrix does not allow information to be re-
distributed globally over the mesh. In order to explain the be-
havior of the various methods under consideration, a number
of additional tests, not reported here for the sake of brevity,
showed the following trends: The combination of mass lumping
and strict enforcement of conservation seems responsible for
the over/under-shoots near the boundary for the VMS-P0 and
VMS-C methods. This phenomenon is somewhat expected as
the lumping procedure, beneficial in the computation of shock
discontinuities, effectively localizes the solution information.
When lumping is used, the numerical forces and work associ-
ated to a particular degree-of-freedom cannot have their effect
redistributed over neighboring nodes by the inversion of a di-
agonal lumped mass matrix, as opposed to the case of the con-
sistent mass matrix. Instead, when the consistent mass matrix
was used, the VMS-C method showed improved results near
the horizontal boundaries, but produced negative undershoots
of the internal energy ahead of the shock front. For this reason,
this choice is not endorsed by the authors as viable.

7.4. Two-dimensional Noh test on a Cartesian quadrant

The Noh test [49] is an implosion test. The velocity has an
initial uniform radial distribution (the velocity field points to the
origin, and has unit magnitude, except at the origin, where it is
forced to zero). The initial internal energy should be zero, but
for practical purposes the value 10−14 is used. The gas constant
γ = 5/3 is applied to all computations, and the initial density
is set to a constant unit value. The shock speed is 1/3, so that
at the final time of 0.6 in the computation, the discontinuity is
found at r = 0.2. The exact solution for the density is given
by a constant value 16.0 past the shock, and by 1 + t/r in front

of the shock, where t is time and r =

√
x2

1 + x2
2 is the radius.

The values of pressure and internal energy past the shock are
16/3 and 1/2, respectively. The initial domain of a Cartesian
quadrant [0, 1] × [0, 1] is subdivided into 50 × 50 squares.
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(a) VMS-P0 [55, 56]. (b) VMS-C. (c) VMS-AC [52, 53].

Figure 22: Two-dimensional Sedov test on a Cartesian mesh: Comparison of mesh deformation patterns.

The mesh deformation results presented in Figure 20 show
that the best mesh deformation (in terms of regularity of the el-
ements and smoothness of the mesh lines) is achieved with the
VMS-C method. Overheating near the implosion corner pro-
duce element of larger area (i. e., lower density) in the case of
the VMS-P0 method.

The VMS-P0 and VMS-C methods show less mesh distor-
tion because both use a similar definition of the element mesh
length in the artificial viscosity, less prone to large variations in
direction from element to element than the VMS-AC method.
Figure 21 shows a comparison against the exact solution. The
density and internal energy plots for the VMS-P0 method are
affected by a pronounced overheating error near the origin (for
a full description of numerical overheating errors, see [49]).
These errors are much reduced in the case of the VMS-AC and
VMS-C methods, due to the specific form of the discontinuity
capturing operator adopted. Again, the thermodynamic vari-
ables computed with the VMS-C method are all positive, while
the VMS-AC method produces negative undershoots in inter-
nal energy and pressure. With respect to the VMS-P0 solution,
the VMS-C solution presents an internal energy overshoot past
the shock, but has lower transverse velocity error. In general,
the numerical solutions computed with the three methods are in
good agreement with the exact solution, considering the coarse-
ness of the mesh (for extensive studies on this problem, see,
e.g., [49]). In the case of the density plot, the VMS-P0 method
presents a more pronounced angular dispersion of the numeri-
cal data with respect to the VMS-C method, also confirmed in
the tangential velocity plots.

In general, the VMS-P0 method yields sharper shock pro-
files than the VMS-C method, at the expense of higher trans-
verse/tangential velocity errors, and a more pronounced disper-
sion of the data around the exact, symmetric solution.

7.5. Two-dimensional Sedov test on a Cartesian quadrant

The Sedov test is a multi-dimensional blast test. An exact
solution, which possesses cylindrical symmetry, is derived with
self-similarity arguments in [58]. The proposed version of the

Sedov blast test is performed on the [0, 1.1] × [0, 1.1] quadrant,
subdivided into 452 initially identical squares, and assesses the
ability of the method to respect the cylindrical symmetry.

The initial density has a uniform unit distribution, γ =

1.4, and the internal energy is “zero” (actually, 10−14) every-
where, except the first square zone on the bottom left cor-
ner of the quadrant, near the origin, where it takes the value,
0.9792/(4h2) = 409.7, with h = 1.1/45 the initial length of the
side of the mesh quadrilaterals [58]. In the case of the VMS-C
and VMS-AC methods, the internal energy initial condition is
further projected onto the nodal finite element basis used to ap-
proximate the thermodynamic variables [53]. The mesh defor-
mation results are shown in Figure 22. Since the exact solution
is obtained by self-similarity arguments and has radial symme-
try, the mesh deformation is expected to be smooth. Figure
22(b) shows a clear superiority for the VMS-C method, in terms
of mesh displacements (similar deformation patterns, although
more distorted, can be observed for the VMS-AC method in Fig.
22(c)). On the other hand, the results for the VMS-P0 method
show a pronounced distortion in the element near the origin,
possibly due to the onset of an hourglass mode, as already ob-
served in [55, 56].

A comparison of the three approaches with respect to the ex-
act solution is presented in Figure 23. Considering the density
plots, the results indicate that the VMS-P0 method is the clos-
est to the exact solution, followed (in terms of accuracy), by the
VMS-C and VMS-AC methods. Specifically, the density peak,
a good indicator of the overall quality of the computation, is
at 5.35 for the VMS-C method, against 5.58 for the VMS-P0
method and only 4.84 for the VMS-AC method. The results of
Figure 22 for the mesh displacements are also confirmed by the
tangential velocity plots, which show that the VMS-C method
has the smallest tangential velocity error.

Remark20. As shown in Figure 23, the values of the artificial
viscosity are lower for the VMS-C and VMS-AC methods with
respect to the VMS-P0 method. This reduced the number of
time steps to complete the computation by about 30%.
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Figure 23: Two-dimensional Sedov test on a Cartesian mesh: Comparison with the exact solution (in red). Left column: VMS-P0 method. Center column: VMS-C
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(a) Initial mesh configuration.

(b) VMS-P0 method at time T = 0.7. (c) VMS-C method at time T = 0.7.

Figure 24: Three-dimensional skewed piston test, as defined in [12].

(a) Initial mesh configuration.

(b) VMS-P0 method. (c) VMS-C method

Figure 25: Three-dimensional Saltzmann test.
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Remark21. Figure 23 also shows that the VMS-C method is
more accurate in capturing the solution with respect to the
VMS-AC method. The different choice of artificial viscosity
and stabilization are responsible for the improvement in the re-
sults.

7.6. Three-dimensional skewed piston and Saltzmann tests

We now present two three-dimensional extensions of the
two-dimensional Saltzmann test. In the skewed piston test, ini-
tially proposed in [12], the nodes of a 100 × 10 × 10-element
mesh are disposed in a domain [0, 1]× [0, 0.1]× [0, 0.1] accord-
ing to the following rule:

(x1)i jk = ∆x1(i − 1) + α jk sin(π∆x1(i − 1)) , (207)
(x2)i jk = ∆x2( j − 1) , (208)
(x3)i jk = ∆x3(k − 1) , (209)

with

α jk =

{
(0.1−∆x3(k−1))(1−20(∆x2( j−1))), y ∈ [0, 0.05] ,
∆x3(k−1)(20(∆x2( j−1))−1), y ∈ (0.05, 0.1] .

(210)

This yields the initial mesh in figure 24(a), in which regions
of low and high skewness of the mesh are next to each other.
The setup of the test in terms of initial and boundary condi-
tions is virtually identical to the two-dimensional Saltzmann
test. The mesh deformation at time T = 0.7 for the VMS-P0
and VMS-C methods is depicted in Figure 24(b) and 24(c), re-
spectively. Near the location of the piston, the VMS-C method
shows higher element distortion, which however does not seem
to affect the overall quality of the solution. In fact, comparing
the solutions of the VMS-P0 and VMS-C methods against the
exact solution (see the plots in the first two columns of Fig. 26),
the overshoots in the solution are much smaller for the VMS-C
than for the VMS-P0 method. A comparison with the density
plot for the same computations in the very promising work of
Nkonga and Maire [42], in Figure 27, shows that the method
in [42] is somewhat intermediate in performance between the
VMS-P0 and the VMS-C.

An even more challenging test was performed using a mesh
with the distribution of points outlined in equations (207)–
(209), but this time with

α jk = 10(0.05−∆x3(k−1))(0.1−∆x2( j−1)) . (211)

This results in the mesh presented in Figure 25(a), in which
a double Saltzmann pattern with reversed direction appears on
the lateral faces of the parallelepiped [0, 1] × [0, 0.1] × [0, 0.1].
Initial and boundary conditions are as in the skewed piston test.

In this case, the VMS-P0 algorithm could not perform the
computations to the final time, but stopped earlier due to the
collapse of the distance between two nodes (see Fig. 25(b)).
Instead, the VMS-C algorithm carries the computation through
the end (see Fig. 25(c)), and the final solution matches reason-
ably well the exact solution (right column of Fig. 26).

Figure 27: Three-dimensional skewed piston problem: Density plot from the
computations performed in [42].

7.7. Three-dimensional Noh test on a Cartesian octant
The initial conditions for the Noh test in three dimensions are

identical to the two-dimensional case, but will generate a more
intense, spherical shock pattern. In this case, since the shock
Mach number is infinite for both the two- and three-dimensional
case, the density ratio is a better indicator of the shock intensity.
In the three-dimensional case, this ratio is 64, against 16 for the
two-dimensional case. The domain [0, 1.1] × [0, 1.1] × [0, 1.1]
is uniformly meshed with three meshes of resolution 303 =

27, 000, 603 = 216, 000, and 1003 = 1, 000, 000 cubes. A radial
shock propagates with speed 1/3 in the computational domain,
so that at the final time of 0.6 in the computation, the discon-
tinuity is found at r = 0.2. The exact solution for the density
behind the shock is 64.0 and decays as (1 + t/r)2 in front of the

shock, where t is time and r =

√
x2

1 + x2
2 + x2

3 is the radius. Past
the shock, the pressure and internal energy take the values 64/3
and 1/2, respectively.

Similarly to what was already observed in the two-
dimensional setting, also the three-dimensional results show
larger distortion in the mesh near the coordinate origin for the
VMS-P0 method (Fig. 28(a)), than the VMS-C method (Fig.
28(b)). Again, this is a consequence of larger overheating er-
rors for the VMS-P0 with respect to the VMS-C method, as
appreciable in the comparison with the exact solution presented
in Figure 29. Because the VMS-AC method was never imple-
mented in three dimensions, we do not present any comparisons
with such approach. We would expect, however, a trend very
similar to the two-dimensional case.

As in the two-dimensional case, the VMS-P0 method shows
somewhat sharper shock profiles than the VMS-C method, at
the expense of a more pronounced overshoot in the pressure,
a larger internal energy overheating, a larger scattering of the
data about the exact solution, and, particularly, larger errors in
the tangential velocity. Both solutions converge to the exact so-
lution as the mesh is refined, and the overall numerical errors
are within the bounds of what is expected for these mesh reso-
lutions [49].
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(a) VMS-P0 method. (b) VMS-C method

(c) Zoomed view. Left: VMS-P0 method. Right: VMS-C method,

Figure 28: Three-dimensional Noh test on a Cartesian mesh: Mesh deformation for the test performed on the 603 mesh.
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Figure 29: Three-dimensional Noh test on a Cartesian mesh: Comparison with the exact solution (in red) for the 303 (left), 603 (center), and 1003 (right) meshes.
In light blue (cyan), the VMS-P0 method, in dark blue the VMS-C method. From the top row down: Density, pressure, internal energy, radial velocity vr , tangential

velocity vt , and artificial viscosities. Each variable is plotted as a function of the radius r =

√
x2

1 + x2
2 + x2

3.
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(a) VMS-P0 method.

(b) VMS-C method.

Figure 30: Three-dimensional Sedov test on a Cartesian mesh of 443 elements: The VMS-P0 method, could not be run to completion (Fig. 30(a)), due to an
hourglass pattern developing near the coordinate origin. The VMS-C method (Fig. 30(b)) did not experience the onset of hourglass modes, and could be run
successfully.
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Figure 31: Three-dimensional Sedov test on a Cartesian mesh: Comparison with the exact solution (in red) of computations performed on a 223 mesh (left column),
443 mesh (center column), and 883 mesh (right column). In light blue (only on the left column) the VMS-P0 method, in dark blue the VMS-C method. From the top
row down: Density, pressure, internal energy, radial velocity vr , tangential velocity vt , and artificial viscosities. Each variable is plotted as a function of the radius

r =

√
x2

1 + x2
2 + x2

3.
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7.8. Three-dimensional Sedov test on a Cartesian octant

The proposed version of the Sedov blast test is performed
on the [0, 1.1] × [0, 1.1] × [0, 1.1] octant, subdivided into 223 =

10, 648, 443 = 85, 184, 883 = 681, 472 cubic elements. This
refinement study is aimed at evaluating the robustness of the
method, since, as the mesh-spacing is refined, the initial internal
energy distribution is changed so that all the initial internal en-
ergy keeps being concentrated in the element adjacent to the co-
ordinate origin. This amounts to setting the initial distribution
of internal energy to zero, with the exception of the nearest ele-
ment to the origin for which ε0 = 0.851/(8h3), with h the initial
length of the sides of the cubic elements [58]. Note also that be-
cause the initial conditions are changed as the mesh is refined,
this particular setup of the refinement study cannot be used to
evaluate convergence rates. As in the two-dimensional case,
the initial conditions for the thermodynamic variables were pro-
jected onto the nodal basis.

Remark22. The Sedov test in three dimensions is much more
challenging than its two-dimensional counterpart, as it can
more easily trigger hourglass-type instabilities, for two funda-
mental reasons: On the one hand, the spherical pattern of the
flow is responsible for a higher concentration of internal en-
ergy; on the other hand, the space of hourglass modes is much
larger in three than in two dimensions. In fact, while there are
two hourglass modes out of eight kinematic modes for a two-
dimensional quadrilateral, there are actually twelve hourglass
modes out of twenty-four kinematic modes for a three dimen-
sional hexahedron [4]. Since a Cartesian mesh is used to rep-
resent a spherical flow, it is guaranteed that all the hourglass
modes are to some extent excited.

The most remarkable result is that the VMS-P0 method does
not pass the refinement test. Using the implementation detailed
in [55], it was only possible to run successfully the case on the
223 mesh. Already in the case of the 443 mesh, due to a spu-
rious hourglass pattern, two nodes of the mesh collapsed to in-
finitesimal distance, driving the time step to zero, as evident in
Figure 30(a). This, in spite of the fact that, in contrast with the
two-dimensional case, even for the VMS-P0 method the initial
condition on the internal energy was smoothed by first perform-
ing a nodal projection, and then re-averaging the result on each
of the elements of the initial mesh (see [55]).

In this particular test, the VMS-P0 method performance
should be taken as indicative of a typical finite element or finite
difference method for shock hydrodynamics based on piece-
wise constant thermodynamic variables and shock capturing
artificial viscosities. In fact, we also replaced the variational
multiscale hourglass control in the VMS-P0 method with a
Flanagan-Belytschko viscous hourglass control [21], and found
no substantial improvement on the results. More specifically,
the large values of the Flanagan-Belytschko hourglass viscos-
ity needed to run the 223-element test case precluded robust
computations in the case of the three-dimensional Noh test
(see, for more details, [55]). This is by no means a critique
of the Flanagan-Belytschko hourglass control [21], originally
designed to stabilize solid mechanics computations, and very

Figure 32: Three-dimensional Sedov test on a Cartesian mesh, mesh deforma-
tion and density contour plot from the computations performed in [2].

effective in this context. It is unclear if stabilization methods
such as subzonal masses/pressures [13] are a viable choice for
this challenging problem, as the presented three-dimensional
test on Cartesian geometry has not been reported in the litera-
ture.

On the contrary, Figure 30(b) shows how the VMS-C method
passes the test. The slight distortion in the mesh is due to a
small acoustic pulse produced by the artificial viscosity in the
initial stages of the transient, and should not be mistaken for
an hourglass pattern: Extensive testing and analysis of the dy-
namic transient confirms this claim.

Figure 31 shows a comparison of the VMS-P0 and VMS-C
methods with the exact solution. We observe that the thermo-
dynamic variables are converging to the exact solution for the
VMS-C method, while the error in the transverse velocity does
not seem to converge in the L∞-norm (the maximum norm).
This is thought to depend on the increased intensity of the spu-
rious acoustic pulse as the mesh is refined (due to the increased
localization of initial internal energy near the origin). Observe
that, as the mesh is refined, the region of convergence of the ra-
dial velocity extends further and further from the shock towards
the origin, meaning that there is convergence in a point-wise
and L1-/L2-integral sense.

One important point of note is the fact that the proposed
VMS-C method shows very low radial dispersion of the data
(particularly, pressure and density). This may be due to the
fact that the mesh distortion near the origin is very moder-
ate in computations (compare also with Figs. 32 and 33).
In summary, from the presented results, it is clear that the
VMS-C method shows exceptional robustness with respect to
the VMS-P0 method.
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Figure 33: Three-dimensional Sedov test on a Cartesian mesh, mesh deformation and density contour plots from the computations performed in [42].

The only sources in the literature in which the proposed
three-dimensional Sedov test was attempted are found in the
work of Anderson et al. [2], in which adaptive multi-resolution
(AMR) techniques in combination with a traditional finite vol-
ume/finite difference method are used, and in [42], where suc-
cessful computations on 203- and 403-element meshes are per-
formed, using a Godunov-type finite volume method. These
results are summarized in Figures 32, 33, and 34, to help the
reader in the comparisons.

Although the absence of quantitative results in [2] makes it
difficult to precisely compare results, a few observations can be
made. In the opinion of the authors, the AMR refinement/de-
refinement procedure applied in the computations in [2] may
have a beneficial effect in filtering out hourglass modes. These
effects are however difficult to reliably control, as the AMR
technique is not targeted at removing hourglass per se. The
density contour/mesh deformation plot of Figure 32 shows still
a considerable amount of distortion in the element near the co-
ordinate origin, due to the onset of an hourglass mode (for more
details on this interpretation, see [55, 56]).

A similar distortion pattern is also seen in the case of the
results in Figure 33 using the method in [42], which did not
however prevent the computations from running to completion
on 203- and 403-element meshes. Considering the density con-
tours in Figure 33, the effect of the mesh distortion may be re-
sponsible for a larger dispersion of the data (especially near the
density peak) in Figure 34. Analyzing more carefully the color
scheme in Figure 33 (relative to the 403-cell grid), it is pos-
sible to observe that the darker red color (representing higher
density values) is found in the center of the computational do-
main, away from the edges aligned with the Cartesian axes.
This seems to indicate that the density peaks at the interior of

the computational domain, away from edge boundaries. In the
case of the VMS-C method in Figure 30(b), instead, this pattern
does not appear, and the iso-surfaces at constant density stay
very close to spherical. The results in Figure 34 compare oth-
erwise well with the VMS-C method. Considering Figure 34
and the 20-element computation, most of the data points cluster
at the peak value of 4, and some reach the higher value of 4.8:
these results compare well with the 223-element computations
performed with the VMS-C method in Figure 31. In particular,
the VMS-C method yields a lower peak of the density, proba-
bly due to the fact that at this resolution level, the mentioned
nodal projection of the initial condition may reduce the peak
value of the initial internal energy pulse. For finer meshes, in-
stead, the density peak produced by the VMS-C method at the
final instant of the computation becomes considerably sharper.
Returning to Figure 34, in the 40-element computation, most of
the data points cluster at the peak value 5, and some reach the
value 5.5, in good comparison with the results for the VMS-C
method on the 443-element mesh in Figure 31. No results on
meshes of fineness comparable with the 883-element case of
Figure 31 are presented in [42].

8. Summary

This work documents the development of a variational mul-
tiscale framework for the stabilization of updated Lagrangian
stabilized formulations of shock hydrodynamics. The analysis
applies to materials obeying a generalized caloric (e.g., Mie-
Grüneisen) equation of state. The proposed algorithm derives
from and combines recent work of the authors in the context
of stabilization of Lagrangian hydrodynamics systems [52, 53]
and strictly conservative time integration techniques [55, 56].
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(a) 203-mesh. (b) 403-mesh.

Figure 34: Three-dimensional Sedov test on a Cartesian mesh, results from the computations performed in [42]. The density is plotted for a resolution of 203

elements (left) and 403 elements. The density is plotted as a function of the radius r =

√
x2

1 + x2
2 + x2

3, and all the data is collapsed on a single radial plot.

Although the proposed approach was first developed in the
general nonlinear setting, the presentation of the main con-
cepts has been performed first in the simpler linearized sys-
tem of shock hydrodynamics equations, which corresponds to
an acoustic system of equations in Lagrangian coordinates. A
predictor/multi-corrector approach, based on a mid-point dis-
cretization in time has been presented as a specific implementa-
tion of the general concepts, yielding a numerical method which
preserves global conservation and Galilean invariance proper-
ties in the nonlinear case. It is clear however, that the general
methodology can also be extended to a more general class of
time integration schemes.

A complete von Neumann analysis of the mentioned
predictor/multi-corrector scheme has been performed (in the
case of one-dimensional, periodic domains), to study the sta-
bility and accuracy properties of the method, and to estimate
appropriate values of the stabilization parameters present in the
formulation. In this regard, the von Neumann analysis becomes
an integral part in its design of the predictor/multi-corrector al-
gorithm. In particular, it was found that the proposed iterative
method is formally second-order accurate in space and time.
In addition, robust and tight time-stepping bounds have been
derived, also in the case when shock capturing operators are ac-
tive. It appears from this analysis that the effect of variational
multiscale operators in shock hydrodynamics computations is
to improve the stability and dispersion characteristics of time
integrators without adding overly restrictive conditions on the
time step. The linearized theory suggests that best results can
be achieved with a CFL safety factor of 0.8, and numerical ex-
periments confirm these findings.

Extensive numerical computations on quadrilateral and hex-
ahedral elements in two and three dimensions have been pre-
sented and compared with results from previous developments
by some the authors and with state-of-the-practice computa-
tions by other research groups. In particular, a number of three-
dimensional Sedov test computations showed encouraging re-
sults in terms of the robustness of the method with respect to

instabilities of hourglass type, which can be considered as vir-
tually absent. Additional work should be devoted to thoroughly
testing the present methodology in the case of triangular and
tetrahedral meshes in two and three dimensions, and compar-
ing the results to the ones produced in [53].
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A. Von Neumann analysis

This appendix presents the von Neumann analysis of the
predictor/multi-corrector method developed in Section 4, for
the interested reader. As a first step, consider the stabi-
lized equations (67)–(68), discretized using the predictor/multi-
corrector algorithm described in Section 4.2, in the one-
dimensional, periodic case. More precisely, equations (67)–
(68) are augmented by diffusive operators deriving from the lin-
earization of the discontinuity capturing operators defined by
(148)–(149). Namely, denoting by T the unit periodic torus
along the real line R, and considering a piece-wise linear fi-
nite element decomposition, we have that, for every discrete
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test functions ψ and φ,

0 =

∫
T
ψ V̇ dX −

∫
T
ψ,X P dX

+

∫
T
ψ,X τ(Ṗ + c2

sV,X) dX +

∫
T
ψ,X νV V,X dX , (212)

0 =

∫
T
φ Ṗ dX +

∫
T
φ c2

s V,X dX

+

∫
T
φ,X τc2

s(V̇ + P,X) dX +

∫
T
φ,X νP P,X dX , (213)

where we have dropped the ”h” superscript and we have used
the notation V = ρv (recall ρ = const.) and P = p. For the sake
of simplicity, we assume νV = νP = ν. Hence, the discretization
in time of (212)-(213) yields:

0 =

∫
T
ψ

(
V (i+1)

n+1 − Vn

)
dX − ∆t

∫
T
ψ,X P(i)

n+1/2 dX

+ ∆t
∫

T
ψ,X τ̃

(
P(i)

n+1 − Pn + ∆tc2
s(V,X)(i)

n+1/2

)
dX

+ ∆t
∫

T
ψ,X ν (V,X)(i)

n+1/2 dX , (214)

0 =

∫
T
φ

(
P(i+1)

n+1 − Pn

)
dX + ∆t

∫
T
φ c2

s (V,X)(i+1)
n+1/2dX

+ ∆t
∫

T
φ,X τ̃c2

s

(
V (i+1)

n+1 − Vn + ∆t(P,X)(i)
n+1/2

)
dX

+ ∆t
∫

T
φ,X ν (P,X)(i)

n+1/2 dX , (215)

where τ̃ = τ
∆t =

cτ
2 , (·)(i) and (·)(i+1) are used to denote quantities

computed with the predictor/corrector iterates (i) and (i + 1),
respectively.

We assume a uniform, equispaced subdivision of the torus T
into finite elements of measure h. Recalling that both pressure
and velocity are approximated by piece-wise linear functions,
and using mass lumping, the following finite difference equa-
tions are derived:

0 =V (i+1)
j,n+1 − V j,n

+
σ

4cs

(
P(i)

j+1,n+1 + P j+1,n − P(i)
j−1,n+1 − P j−1,n

)
−

σ

2cs
τ̃
(
P(i)

j+1,n+1 − P j+1,n − P(i)
j−1,n+1 + P j−1,n

)
−
κ + τ̃σ2

2

(
V (i)

j+1,n+1 + V j+1,n − 2V (i)
j,n+1

−2V j,n + V (i)
j−1,n+1 + V j−1,n

)
, (216)

0 =P(i+1)
j,n+1 − P j,n

+
csσ

4

(
V (i+1)

j+1,n+1 + V j+1,n − V (i+1)
j−1,n+1 − V j−1,n

)
−

csσ

2
τ̃
(
V (i+1)

j+1,n+1 − V j+1,n − V (i+1)
j−1,n+1 + V j−1,n

)
−
κ + τ̃σ2

2

(
P(i)

j+1,n+1 + P j+1,n − 2P(i)
j,n+1

−2P j,n + P(i)
j−1,n+1 + P j−1,n

)
, (217)

where j is the node index, σ =
cs∆t

h is the acoustic Courant
number and κ = ν∆t

h2 .

Remark23. In order to keep the analysis as close as possible to
the predictor/multi-corrector algorithm of Section 4, the latest
available velocity iterate V (i+1)

n+1 is used in (215) and (217).

In conformity with the von Neumann stability analysis (see
[48, 60] for details), because the boundary conditions are pe-
riodic, we can expand the solution degrees-of-freedom as a
finite, linear combination of complex exponentials with com-
plex coefficients. This eventually amounts to applying a Dis-
crete Fourier Transform (DFT) operator to the discrete equa-
tions (216)–(217). In particular, we have:

V (i)
j,n =

N/2∑
k=−N/2+1

V̂ (i)
k,neiβk j , (218)

P(i)
j,n =

N/2∑
k=−N/2+1

P̂(i)
k,neiβk j , (219)

where i =
√
−1, and V̂ (i)

k,n and P̂(i)
k,n are the Fourier coeffi-

cients for velocity and pressure, relative to the kth harmonic,
the nth time step and the ith iterate. Note that N is the num-
ber of elements (a multiple of 2), and βk = 2πhk

|T| = 2πk
N is an

angularly scaled version of the integer wave number k (with
|T| = meas(T) = Nh = 1 the measure of the torus). Com-
plex exponentials associated to different wave numbers satisfy
a discrete orthogonality property:

N/2−1∑
m=−N/2

eiβkmeiβqm = δkq , for − N/2 ≤ k, q ≤ N/2 , (220)

with δkq the Kronecker delta tensor (δkq = 1 if k = q, and
δkq = 0 if k , q). We then replace (218)-(219) into (216)-(217)
multiplied by eiβq j and eiβr j, respectively, and we sum over j.
Due to the orthogonality property (220), and the linearity of
the system of equations (216)-(217), it is easy to verify that
the previous steps lead to N pairs of equations, coupling the
dynamics of the kth pressure and velocity modes, with −N/2 +

1 ≤ k ≤ N/2. Namely:

(I + A0)Ẑ(i+1)
k,n+1 = A1 Ẑ(i)

k,n+1 + (I + A2)Ẑk,n , (221)

where

Ẑ(i)
k,n =

 V̂ (i)
k,n

P̂(i)
k,n

 (222)

is the kth velocity/pressure modal pair, relative to the nth time
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step and the ith iterate, and

I =

 1 0

0 1

 , (223)

A0 =

 0 0

−i
(
τ̃ − 1

2

)
cs σ sin(βk) 0

 , (224)

A1 =

 (τ̃σ2 + κ) (cos(βk) − 1) i
(
τ̃ − 1

2

)
σ
cs

sin(βk)

0 (τ̃σ2 + κ) (cos(βk) − 1)

 ,
(225)

A2 =

 (τ̃σ2 + κ) (cos(βk) − 1) −i
(
τ̃ + 1

2

)
σ
cs

sin(βk)

−i
(
τ̃ + 1

2

)
cs σ sin(βk) (τ̃σ2 + κ) (cos(βk) − 1)

 .
(226)

It is also very important to observe that because the degrees-
of-freedom “signal” has real values, the discrete Fourier coeffi-
cients must satisfy the complex conjugacy property

Ẑ(i)
−k,n =

(
Ẑ(i)

k,n

)∗
, for 0 ≤ k ≤ N/2 − 1 , (227)

where Ŵ∗
indicates the complex conjugate of Ŵ (componen-

twise), and, in addition, the following condition for the often
called “odd ball” mode holds:

Ẑ(i)
N/2,p = 0 . (228)

Because complex conjugates have the same absolute value and
opposite phase, it is sufficient to limit the study of the amplifi-
cation factors to the discrete modes in the range 0 ≤ k < N/2,
that is, 0 ≤ βk < π.

The vector equation (221) is a recurrence relationship be-
tween the predictor/multi-corrector iterates of the proposed
time-integration approach. Set

B0 = (I + A0)−1(I + A2) , (229)

B1 = (I + A0)−1 A1 . (230)

Recalling that the first guess for the new iterate at time tn+1 is
the solution at time tn, namely Ẑ(0)

k,n+1 = Ẑk,n, we can derive

explicit recurrence formulas for the computation of Ẑ(i+1)
k,n+1 in

terms of Ẑk,n:

Ẑ(1)
k,n+1 = B1 Ẑ(0)

k,n+1 + B0 Ẑk,n

= (B0 + B1)Ẑk,n

= G(1) Ẑk,n , (231)

Ẑ(i+1)
k,n+1 = B1 Ẑ(i)

k,n+1 + B0 Ẑk,n

=
(
B1G(i) + B0

)
Ẑk,n

= G(i+1) Ẑk,n . (232)

In the limit for an infinite number of iterations, we obtain the
amplification matrix for the original implicit mid-point algo-
rithm from which the predictor/corrector time integrator is de-
rived:

(I + A0)Ẑ(∞)
k,n+1 = A1 Ẑ(∞)

k,n+1 + (I + A2)Ẑk,n , (233)

that is, removing the superscript (∞) from Ẑ(∞)
k,n+1, and rearrang-

ing terms,

Ẑk,n+1 = (I + A0 − A1)−1(I + A2) Ẑk,n = G(∞) Ẑk,n . (234)

Remark24. The predictor/multi-corrector method has the na-
ture of a Gauss-Seidel iterative, fixed-point scheme, since the
matrix I + A0 is lower diagonal.

Remark25. Convergence of the fixed-point iteration is ensured
if ||B1|| < 1 (sufficient condition). It will be subsequently shown
that this condition is equivalent to the temporal stability condi-
tion.

B. Stability of the highest wavembers

Stability of the highest modes in a computation is only a nec-
essary condition for overall stability, but is of practical use in
computations since it can provide simple time-step control es-
timates.

The amplification of the highest wave number is governed by
the matrices G(i), when βk is set equal to π. In this case, it is easy
to observe that A0 = 0, and that A1 and A2 become diagonal
and equal to a multiple of the identity matrix I. In particular,

A1 = A2 = −(cτσ2 + 2κ)I . (235)

Therefore, the time evolution of the highest pressure and ve-
locity Fourier modes is decoupled and identical. The study of
the proposed predictor/multi-corrector method can therefore be
reduced to a scalar problem. Setting α = cτσ2 + 2κ ≥ 0, we
obtain:

G(1) = (1 − 2α)I , (236)

G(2) = (1 − 2α + 2α2)I , (237)

G(3) = (1 − 2α + 2α2 − 2α3)I , (238)

G(4) = . . . . (239)

Using the classical formulas for polynomial division, the results
for the first few iterates suggest the following general formula:

G(i) =

(
2

1 − (−α)i+1

1 + α
− 1

)
I . (240)

Proving (240) is easily achieved by recurrence. In fact (240)
applies for i = 1, and assuming (240) holds for a given i, we
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have that, using (229), (230), and (232),

G(i+1) = B1G(i) + B0

= −αG(i) + (1 − α)I

=

(
−α

(
2

1 − (−α)i+1

1 + α
− 1

)
+ 1 − α

)
I

=

(
1 − α + 2α(−α)i+1

1 + α

)
I

=

−1 − α + 2
(
1 − (−α)i+2

)
1 + α

 I

=

(
2

1 − (−α)i+2

1 + α
− 1

)
I . (241)

For stability, the following inequalities must be satisfied:

−1 ≤
(
2

1 − (−α)i+1

1 + α
− 1

)
≤ 1 . (242)

Observing that α ≥ 0, the left inequality in (242) yields
(−α)i+1 ≤ 1, which holds true either if i is even or if i is odd
and α ≤ 1. Analogously, the right inequality yields (−α)i ≤ 1,
which holds true either if i is odd or if i is even and α ≤ 1. In
conclusion, the condition

α ≤ 1 (243)

is sufficient for stability of the highest wave numbers. Condi-
tion (243) can then be used to estimate the stable time-step size,
as it implies

cτσ2 + 2κ − 1 ≤ 0 , or, cτc2
s∆t2 + 2ν∆t − h2 ≤ 0 .

(244)

Solving the associated quadratic equation yields the bounds

−ν −
√
ν2 + cτc2

sh2

cτc2
s

≤ ∆t ≤
−ν +

√
ν2 + cτc2

sh2

cτc2
s

. (245)

The left bound is always verified, the right gives the stabil-
ity limit. Multiplying and dividing the right inequality by
ν +

√
ν2 + cτc2

sh2 (always a strictly positive quantity in com-
putations) and simplifying the term cτc2

s , we obtain

∆t ≤
h2

ν +
√
ν2 + cτc2

sh2
. (246)

Remark26. As already mentioned, the predictor multi-
corrector approach can also be interpreted as a fixed-point it-
eration procedure [56]. A sufficient condition for the conver-
gence (in spectral space) of such procedure is ||B1|| < 1, that is
ρ(B1) < 1 (where, as usual, ρ(B1) denotes the spectral radius of
the matrix ρ(B1)). It is not difficult to verify that, in the case of
the highest wave number, that is βk = π, this condition coincides
with (244). By plotting contour surfaces at ρ(B1) = 1, we were
also able to graphically verify that the stability implies conver-
gence of the corrector iterates on the entire space [σ, κ, βk]. This
approach is virtually identical to the one outlined in Section 6.5
(particularly, Figure 11) and will not be reported here, for the
sake of brevity.
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